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PART I

Introduction to astrophysical plasmas
I.1. What is a plasma?

Astrophysical plasmas are remarkably varied, and so it may appear difficult at first
to provide a definition of just what constitutes a “plasma”. Is it an ionized, conducting
gas? Well, the cold, molecular phase of the interstellar medium has a degree of ionization
of .10−6, and yet is considered a plasma. (Indeed, plenty of researchers still model
this phase using ideal magnetohydrodynamics!) Okay, so perhaps a sufficiently ionized,
conducting gas (setting aside for now what is meant precisely by “sufficiently”)? Well,
plasmas don’t necessarily have to be good conductors. Indeed, many frontier topics in
plasma astrophysics involve situations in which resistivity is fundamentally important.

Clearly, any definition of a plasma must be accompanied by qualifiers, and these
qualifiers are often cast in terms of dimensionless parameters that compare length and
time scales. Perhaps the most important dimensionless parameter in the definition of a
plasma is the plasma parameter,

Λ
.
= neλ

3
D, (I.1)

where ne is the electron number density and

λD
.
=

(
T

4πe2ne

)1/2

= 7.4

(
TeV
ncm−3

)1/2

m (I.2)

is the Debye length. We’ll derive this formula for the Debye length and discuss its
physics more in § III.1 of these notes, but for now I’ll simply state its meaning: it
is the characteristic length scale on which the Coulomb potential of an individual
charged particle is exponentially attenuated (“screened”) by the preferential accumulation
(exclusion) of oppositely- (like-) charged particles into (from) its vicinity.1 Thus, Λ reflects
the number of electrons in a Debye sphere. Its dependence upon the temperature T
suggests an alternative interpretation of Λ:

Λ =
T

4πe2/λD
∼ kinetic energy

potential energy
. (I.3)

Indeed, if the plasma is in thermodynamic equilibrium with a heat bath at temperature
T , then the concentration of discrete charges follows the Boltzmann distribution,

nα(r) = nα exp

(
−qαφ(r)

T

)
, (I.4)

where nα is the mean number density of species α, qα is its electric charge, and φ(r) is
the Coulomb potential. In the limit Λ→∞, the distribution of charges becomes uniform,
i.e., the plasma is said to be quasi-neutral, with equal amounts of positive and negative
charge within a Debye sphere.

Debye shielding is fundamentally due to the polarization of the plasma and the
associated redistribution of space charge, and is an example of how a plasma behaves as a
dielectric medium. The hotter plasma, the more kinetic energy, the less bound individual
electrons are to the protons. When Λ� 1, collective electrostatic interactions are much
more important than binary particle–particle collisions, and the plasma is said to be

1In this course, sometimes temperature will be measured in Kelvin, and sometimes temperature
will be measured in energy units (eV) after a hidden multiplication by Boltzmann’s constant kB.
An energy of 1 eV corresponds to a temperature of ∼104 K (more precisely, '1.16× 104 K).
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weakly coupled. These are the types of plasmas that we will focus on in this course (e.g.,
the intracluster medium of galaxy clusters has Λ ∼ 1015).

Shown below is a rogue’s gallery of astrophysical and space plasmas in the T–n plane,
with the Λ = 1 line indicating a divide between quasi-neutral plasmas (to the left) and
metals (to the right):

Clearly, there is a lot of parameter space here and so, to classify these plasmas further,
we require additional dimensionless parameters.

I.2. Fundamental length and time scales
Another useful dividing line between different types of astrophysical and space plasmas

is whether they are collisional or collisionless. In other words, is the mean free path
between particle–particle collisions, λmfp, larger or smaller than the macroscopic length
scales of interest, L. If λmfp � L, then the plasma is said to behave as a fluid, and various
hydrodynamic and magnetohydrodynamic (MHD) equations can be used to describe its
evolution. If, on the other hand, the mean free path is comparable to (or perhaps even
larger than) the macroscopic length scales of interest, the plasma cannot be considered
to be in local thermodynamic equilibrium, and the full six-dimensional phase space (3
spatial coordinates, 3 velocity coordinates) through which the constituent particles move
must be retained in the description. Written in terms of the thermal speed of species α,

vthα
.
=

(
2Tα
mα

)1/2

, (I.5)

and the collision timescale τα, the collisional mean free path is

λmfp,α
.
= vthατα. (I.6)
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For electron–ion collisions,

τei =
3
√
meT

3/2
e

4
√
2πneλeZ2e4

' 3.4× 105
(

T
3/2
eV

ncm−3λeZ2

)
s, (I.7)

where Ze is the ion charge and λe is the electron Coulomb logarithm; for ion–ion collisions,

τii =
3
√
miT

3/2
i

4
√
πniλiZ4e4

' 2.1× 107
(

T
3/2
eV

ncm−3λiZ4

)
s, (I.8)

where λi is the ion Coulomb logarithm. Note that the resulting λmfp,e and λmfp,i differ
only by a factor of order unity:

λmfp,e =
3

4
√
π

T 2
e

neλeZ2e4
, λmfp,i =

3
√
2

4
√
π

T 2
i

niλiZ4e4
,

and so one often drops the species subscript on λmfp. With these definitions, it becomes
clear that the plasma parameter (I.1) also reflects the ratio of the mean free path to the
Debye length:

Λ
.
=
neλ

4
D

λD
∼ T 2

e /ne/e
4

λD
∼ λmfp

λD
; (I.9)

again, a measure of the relative importance of collective effects (λD) and binary collisions
(λmfp).

Independent of whether a given astrophysical plasma is collisional or collisionless,
nearly all such plasmas host magnetic fields, either inherited from the cosmic background
in which they reside or produced in situ by a dynamo mechanism. There are two ways in
which the strength of the magnetic field is quantified. First, the plasma beta parameter:

βα
.
=

8πnαTα
B2

, (I.10)

which reflects the relative energy densities of the thermal motions of the plasma particles
and of the magnetic field. Note that

βα =
2Tα
mα
× 4πmαnα

B2
=
v2thα
v2Aα

, (I.11)

where

vAα
.
=

B√
4πmαnα

(I.12)

is the Alfvén speed for species α.2 Second, the plasma magnetization, ρα/L, where

ρα
.
=
vthα
Ωα

(I.13)

is the Larmor radius of species α and

Ωα ≡
qαB

mαc
(I.14)

is the gyro- (or cyclotron, or Larmor) frequency. What distinguishes many astrophysical
plasmas from their terrestrial laboratory counterparts is that the former can have β � 1
even though ρ/L≪ 1.3 In other words, a magnetized astrophysical plasma need not have

2Usually, a single Alfvén speed, vA
.
= B/

√
4π%, is given for a plasma with mass density %.

3The ∼5 keV intracluster medium of galaxy clusters can be magnetized by a magnetic field as
weak as ∼10−18 G.
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an energetically important magnetic field, and β � 1 does not preclude the magnetic
field from having dynamical consequences. You’ve been warned.

There are two more kinetic scales worth mentioning at this point, which we will come
to later in this course: the plasma frequency,

ωpα =

(
4πnαe

2

mα

)1/2

, (I.15)

and the skin depth (or inertial length),

dα
.
=

c

ωpα
=

(
mαc

2

4πnαe2

)1/2

. (I.16)

The former is the characteristic frequency at which a plasma oscillates when one sign of
charge carriers is displaced from the other sign by a small amount (see § III.2). Indeed,
the factor (4πnαe

2) should look familiar from the definition of the Debye length (see
(I.2)). The latter is the characteristic scale below which the inertia of species α precludes
the propagation of (certain) electromagnetic waves. For example, the ion skin depth is
the scale at which the ions decouple from the electrons and any fluctuations in which the
electrons are taking part (e.g., whistler waves). The following relationship between the
skin depth and the Larmor radius may one day come in handy:

dα =
vA,α
Ωα

=
ρα

β
1/2
α

. (I.17)

I.3. Examples of astrophysical and space plasmas
This part is given as a keynote presentation. Here I simply provide a chart of useful

numbers on the next page (ICM = intracluster medium; JET = Joint European Torus,
a nuclear fusion experiment; ISM = interstellar medium). For quick reference, the Earth
has a ∼0.5 G magnetic field, 1 eV ∼ 104 K, 1 au ≈ 1.5 × 1013 cm, 1 pc ≈ 3 × 1018 cm,
1 pc Myr−1 ' 1 km s−1.
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PART II

Fundamentals of fluid dynamics
Unfortunately, fluid dynamics has all but disappeared from the US undergraduate cur-
riculum, as physics departments have made way for quantum mechanics and condensed
matter.4 This is a shame – yes, it’s classical physics and thus draws less ‘oohs’ and ‘aahs’
from the student (and professorial, for that matter) crowd. But there are many good
reasons to study it. First, it forms the bedrock of fascinating and modern topics like
non-equilibrium statistical mechanics, including the kinetic theory of gases and particles.
Second, it is mathematically rich without being physically opaque. The more you really
understand the mathematics, the more you really understand physically what is going
on; the same cannot be said for many branches of modern physics. Third, nonlinear
dynamics and chaos, burgeoning fields in their own right, are central to arguably the
most important unsolved problem in classical physics: fluid turbulence. Solve that, and
your solution would have immediate impact and practical benefits to society. Finally,
follow in the footsteps of greatness: on Feynman’s chalkboard at the time of his death
was the remit ‘to learn . . . nonlinear classical hydro’. With that, let’s begin.

4An excellent textbook from which to learn elementary fluid dynamics is Acheson’s Elementary
Fluid Dynamics. It provides an engaging mix of history, physical insight, and transparent
mathematics. I recommend it.
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II.1. The equations of ideal hydrodynamics
The equations of hydrodynamics and MHD may be obtained rigorously by taking

velocity-space moments of the Boltzmann and Vlasov–Landau kinetic equations. Huh?
What? Okay, we’ll get to that soon enough. For now, let’s begin with things that
you already know: mass is conserved, Newon’s second law (force equals mass times
acceleration), and the first law of thermodynamics (energy is conserved).

II.1.1. Mass is conserved: The continuity equation
We describe our gaseous fluid by a mass density ρ, which in general is a function of

time t and position r.5 Imagine an arbitrary volume V enclosing some of that fluid. The
mass inside of the volume is simply

M =

∫
V
dV ρ. (II.1)

Now let’s mathematize our intuition: within this fixed volume, the only way the enclosed
mass can change is by material flowing in or out of its surface S:

dM

dt

.
=

∫
V
dV

∂ρ

∂t
= −

∫
S
dS · ρu, (II.2)

where u is the flow velocity.

Gauss’ theorem may be applied to rewrite the right-hand side of this equation as follows:∫
S
dS · ρu =

∫
V
dV ∇· (ρu). (II.3)

Because the volume under consideration is arbitrary, the integrands of the volume
integrals in (II.2) and (II.3) must be the same. Therefore,

∂ρ

∂t
+∇· (ρu) = 0 (II.4)

This is the continuity equation; it’s the differential form of mass conservation.

Exercise. Go to the bathroom and turn on the sink slowly to get a nice, laminar stream flowing
down from the faucet. Go on, I’ll wait. If you followed instructions, then you’ll see that the
stream becomes more narrow as it descends. Knowing that the density of water is very nearly
constant, use the continuity equation to show that the cross-sectional area of the stream A(z)
as a function of distance from the faucet z is

A(z) =
A0√

1 + 2gz/v20
,

5I sometimes denote the mass density by % to avoid confusion with the Larmor radius ρ. But,
given that ρ is standard notation in hydrodynamics for the mass density, and ρ is standard
notation in plasma physics for the Larmor radius, you should learn to tell the difference based
on the context.
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where A0 is the cross-sectional area of the stream upon exiting the faucet with velocity v0 and
g is the gravitational acceleration. If you turn the faucet to make the water flow faster, what
happens to the tapering of the stream?

II.1.2. Newton’s second law: The momentum equation
So far we have an equation for the evolution of the mass density ρ expressed in terms

of the fluid velocity u. How does the latter evolve? Newton’s second law provides the
answer: simply add up the accelerations, divide by the mass (density), and you’ve got
the time rate of change of the velocity. But there is a subtlety here: there is a difference
between the time rate of change of the velocity in the lab frame and the time rate of
change of the velocity in the fluid frame. So which time derivative of u do we take? The
key is in how the accelerations are expressed. Are these accelerations acting on a fixed
point in space, or are they acting on an element of our fluid? It is much easier (and
more physical) to think of these accelerations in the latter sense: given a deformable
patch of the fluid – large enough in extent to contain a very large number of atoms but
small enough that all the macroscopic variables such as density, velocity, and pressure
have a unique value over the dimensions of the patch – what forces are acting on that
patch? These are relatively simple to catalog, and we will do so in short order. But first,
let’s answer our original question: which time derivative of u do we take? Since we have
committed to expressing the forces in the frame of the fluid element, the acceleration
must likewise be expressed in this frame. The acceleration is not

∂u

∂t
. (II.5)

Remember what a partial derivative means: something is being fixed! Here, it is the
instantaneous position r of the fluid element. Equation (II.5) is the answer to the
question, ‘how does the fluid velocity evolve at a fixed point in space?’ Instead, we
wish to fix our sights on the fluid element itself, which is moving. The acceleration we
calculate must account for this frame transformation:

a =
∂u

∂t
+

dr

dt
·∇u, (II.6)

where dr/dt is the rate of change of the position of the fluid element, i.e., the velocity
u(t, r). This combination of derivatives is so important that it has its own notation:

D

Dt

.
=

∂

∂t
+ u ·∇. (II.7)

It is variously referred to as the Lagrangian derivative, or comoving derivative, or
convective derivative. By contrast, the expression given by (II.5) is the Eulerian deriative.
Note that the continuity equation (II.4) may be expressed using the Lagrangian derivative
as

D ln ρ

Dt
= −∇·u, (II.8)

which states that incompressible flow corresponds to ∇·u = 0.
So, given some force F per unit volume that is acting on our fluid element, we now

know how the fluid velocity evolves: force (per unit volume) equals mass (per unit volume)
times acceleration (in the frame of the fluid element):

F = ρ
Du

Dt
. (II.9)

Now we need only catalog the relevant forces. This could be, say, gravity: ρg = −ρ∇Φ.
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Or, if the fluid element is conducting, electromagnetic forces (which we’ll get to later in
the course). But the most deserving of discussion at this point is the pressure force due
to the internal thermal motions of the particles comprising the gas. For an ideal gas, the
equation of state is

P =
ρkBT

m

.
= ρC2, (II.10)

where T is the temperature in Kelvin, kB is the Boltzmann constant, m is the mass
per particle, and C is the speed of sound in an isothermal gas. Plasma physicists often
drop Boltzmann’s constant and register temperature in energy units (e.g., eV), and I will
henceforth do the same in these notes. How does gas pressure due to microscopic particle
motions exert a macroscopic force on a fluid element? First, the pressure must be spatially
non-uniform: there must be more or less energetic content in the thermal motions of the
particles in one region versus another, whether it be because the gas temperature varies
in space or because there are more particles in one location as opposed to another. For
example, the pressure force in the x direction in a slab of thickness dx and cross-sectional
area dy dz is [

P (t, x− dx/2, y, z)− P (t, x+ dx/2, y, z)
]
dy dz = −∂P

∂x
dV. (II.11)

Unless the thermal motions of the particles are not sufficiently randomized to be isotropic
(e.g., if the collisional mean free path of the plasma is so long that inter-particle collisions
cannot drive the system quickly enough towards local thermodynamic equilibrium), there
is nothing particularly special about the x direction, and so the pressure force force acting
on some differential volume dV is just −∇P dV .

Assembling the lessons we’ve learned here, we have the following force equation for our
fluid:

ρ
Du

Dt

.
= ρ

(
∂

∂t
+ u ·∇

)
u = −∇P − ρ∇Φ (II.12)

This equation is colloquially known as the momentum equation, even though it evolves
the fluid velocity rather than its momentum density. To obtain an equation for the latter,
the continuity equation (II.4) may be used to move the mass density into the time and
space derivatives:

∂(ρu)

∂t
+∇· (ρuu) = ∂ρ

∂t
u+ ρ

∂u

∂t
+ ρu ·∇u+∇· (ρu)u

=

[
∂ρ

∂t
+∇· (ρu)

]
u+ ρ

(
∂

∂t
+ u ·∇

)
u

=

[
0

]
u+ ρ

Du

Dt
= F . (II.13)

Thus, an equation for the momentum density:

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ (II.14)

This form is particularly useful for deriving an evolution equation for the kinetic energy
density. Dotting (II.14) with u and grouping terms,

∂

∂t

(
1

2
ρu2
)
+∇·

(
1

2
ρu2u

)
= −u ·∇P − ρu ·∇Φ, (II.15)
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which is a statement that the kinetic energy of a fluid element changes as work is done
by the forces.

Now, how to we know the pressure P? There’s an equation for that. . .

II.1.3. First law of thermodynamics: The internal energy equation
There are several ways to go about obtaining an evolution equation for the pressure.

One way is to introduce the internal energy,

e
.
=

P

γ − 1
(II.16)

and use the first law of thermodynamics to argue that e is conserved but for P dV work:

∂e

∂t
+∇· (eu) = −P∇·u (II.17)

This is the internal energy equation.
Equation (II.17) may be used to derive a total (kinetic + internal + potential) energy

equation for the fluid as follows. Do (II.15) + (II.17):

∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + e

)
u

]
= −∇· (Pu)− ρu ·∇Φ,

= −(γ − 1)∇· (eu)− ρu ·∇Φ

=⇒ ∂

∂t

(
1

2
ρu2 + e

)
+∇·

[(
1

2
ρu2 + γe

)
u

]
= −ρu ·∇Φ. (II.18)

Now use the continuity equation (II.4) to write

∂(ρΦ)

∂t
+∇· (ρΦu) = ρu ·∇Φ+ ρ

∂Φ

∂t
. (II.19)

Adding this equation to (II.18) yields the desired result:

∂

∂t

(
1

2
ρu2 + e+ ρΦ

)
+∇·

[(
1

2
ρu2 + γe+ ρΦ

)
u

]
= ρ

∂Φ

∂t
(II.20)

The first term in parentheses under the time derivative is sometimes denoted by E .
Yet another way of expressing the internal energy equation (II.17) is to write e =

ρT/m(γ − 1) and use the continuity equation (II.4) to eliminate the derivatives of the
mass density. The result is

D lnT

Dt
= −(γ − 1)∇·u, (II.21)

which states that the temperature of a fluid element is constant in an incompressible
fluid (viz., one with ∇·u = 0). If this seems intuitively unfamiliar to you, consider this:
the hydrodynamic entropy of a fluid element is given by

s
.
=

1

γ − 1
lnPρ−γ =

1

γ − 1
lnTρ1−γ . (II.22)

Taking the Lagrangian time derivative of the entropy along the path of a fluid element
yields

Ds

Dt
=

D lnT

Dt
− (γ − 1)

D ln ρ

Dt
. (II.23)
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It is then just a short trip back to (II.8) to see that (II.21) is, in fact, the second law of
thermodynamics – entropy is conserved in the absence of sources or dissipative sinks:

Ds

Dt
= 0 (II.24)

II.2. Summary: Adiabatic equations of hydrodynamics
The adiabatic equations of hydrodynamics, written in conservative form, are:

∂ρ

∂t
+∇· (ρu) = 0, (II.25a)

∂(ρu)

∂t
+∇· (ρuu) = −∇P − ρ∇Φ, (II.25b)

∂e

∂t
+∇· (eu) = −P∇·u. (II.25c)

The left-hand sides of these equations express advection of, respectively, the mass density,
the momentum density, and the internal energy density by the fluid velocity; the right-
hand sides represents sources and sinks. If the gravitational potential is due to self-gravity,
then one must additionally solve the Poisson equation,

∇2Φ = 4πGρ. (II.26)

where G is Newton’s gravitational constant.
If we instead write these equations in terms of the density, fluid velocity, and entropy

and make use of the Lagrangian derivative (II.7), we have

Dρ

Dt
= −ρ∇·u, (II.27a)

Du

Dt
= −1

ρ
∇P −∇Φ, (II.27b)

Ds

Dt
= 0, (II.27c)

where s .
= (γ − 1)−1 lnPρ−γ . The limit γ → ∞, often of utility for describing liquids,

corresponds to Dρ/Dt = 0, i.e., incompressibility.

Exercise. Show that the gravitational force on a self-gravitating fluid element may be written as

− ρ∇Φ = −∇·
(
gg

4πG
− g2

8πG
I
)
, (II.28)

where g = −∇Φ, g2 = g · g, and I is the unit dyadic. The quantity inside the divergence operator
is known as the gravitational stress tensor. Because it’s written in the form of a divergence, it
represents the flux of total momentum through a surface due to gravitational forces.
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II.3. Mathematical matters
II.3.1. Vector identities

As a start to this section, let me advise you to brush up on your vector calculus. . .

A · (B×C) = B · (C×A) = C · (A×B),

A× (B×C) = B(A ·C)−C(A ·B),

∇· (A×B) = B · (∇×A)−A · (∇×B),

∇× (A×B) = (B ·∇)A− (A ·∇)B −B(∇·A) +A(∇·B),

A× (∇×B) +B× (∇×A) =∇(A ·B)− (A ·∇)B − (B ·∇)A,

. . .

Fluid dynamics is full of these things, and you should either (i) commit them to memory,
(ii) carry your NRL formulary with you everywhere, or (iii) know how to quickly derive
them using things like

εkijεk`m = δi`δjm − δimδj`,

where δij is the Kronecker delta and εijk is the Levi–Civita symbol.

II.3.2. Leibniz’s rule and the Lagrangian derivative of integrals

In the proofs of many conservation laws, a Lagrangian time derivative is taken of a
surface or volume integral whose integration limits are time-dependent. In this case, D/Dt
does not commute with the integral sign. The trick to dealing with these situations is
related to Leibniz’s rule:

d

dt

∫ b(t)

a(t)

dx f(t, x) =

∫ b(t)

a(t)

dx
∂

∂t
f(t, x) + f(t, b(t))

db

dt
− f(t, a(t))da

dt
. (II.29)

In three dimensions, if we’re taking the time derivative of a volume integral whose
integration limits V(t) are time-dependent, the generalization of the above is

d

dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)ub(t, r)

]
, (II.30)

where ub is the velocity of the bounding surface ∂V(t). This is known as the Reynolds
transport theorem. In words, the time rate-of-change of a quantity positioned within a
moving volume is a combination of the lab-frame rate-of-change of that quantity (i.e., the
time derivative at fixed position r – note the partial derivative) and how much of that
quantity flowed through the surface. When the velocity of the bounding surface equals
the fluid velocity, ub = u(t, r), so that each moving volume corresponds to that of a fluid
element, we may replace d/dt in (II.30) with the Lagrangian derivative D/Dt:

D

Dt

∫
V(t)

dV f(t, r) =
∫
V(t)

dV ∂

∂t
f(t, r) +

∮
∂V(t)

dS ·
[
f(t, r)u(t, r)

]
(II.31)

You’ve already encountered an example of this – mass conservation, in which the volume
was a “material volume” moving with the fluid element itself:

0 =
DM

Dt

.
=

D

Dt

∫
V(t)

dV ρ =

∫
V(t)

dV ∂ρ
∂t

+

∮
∂V(t)

dS ·
(
ρu
)
.
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Using the divergence theorem on the final (surface-integral) term gives

0 =

∫
V(t)

dV
[
∂ρ

∂t
+∇·

(
ρu
)]
,

which provides us with our continuity equation.
A similar rule to (II.31) is needed for time derivatives of surface integrals whose

integration limits S(t) are time-dependent. For a vector field F = F (t, r) and a bounding
surface S(t) whose contour ∂S(t) moves with the fluid velocity u = u(t, r), this is given
by

D

Dt

∫
S(t)

dS ·F =

∫
S(t)

dS ·
[
∂F

∂t
+ (∇·F )u

]
−
∮
∂S(t)

d` · (u×F ) (II.32)

(By convention, the contour is taken in the counter-clockwise direction.) Note that
−d` · (u×F ) = F · (u×d`). In words, the comoving change of the differential surface
element dS equals the amount of area swept out in a time dt via the advection of a
differential line element d` on ∂S by a distance udt. Equation (II.32) can be used to
prove conservation of magnetic flux and conservation of fluid vorticity (§II.4).

II.3.3. u ·∇u and curvilinear coordinates

Finally, the nonlinear combination u ·∇u that features prominently in the Lagrangian
time derivative can be complicated, particularly in curvilinear coordinates where the
gradient operator within it acts on the unit vectors within u. For example, in cylindrical
coordinates (R,ϕ, z),

u ·∇u = u ·∇
(
uRR̂+ uϕϕ̂+ uzẑ)

= (u ·∇uR)R̂+ (u ·∇uϕ)ϕ̂+ (u ·∇uz)ẑ +
u2ϕ
R

∂ϕ̂

∂ϕ
+
uRuϕ
R

∂R̂

∂ϕ

= (u ·∇ui)êi −
u2ϕ
R
R̂+

uRuϕ
R

ϕ̂, (II.33)

where, to obtain the final equality, we have used ∂ϕ̂/∂ϕ = −R̂ and ∂R̂/∂ϕ = ϕ̂;
summation over the repeated index i is implied in the first term in the final line.

Exercise. Follow a similar procedure to show that, in spherical coordinates (r, θ, ϕ),

u ·∇u =

(
ur

∂

∂r
+
uθ
r

∂

∂θ
+

uϕ
r sin θ

∂

∂ϕ

)(
urr̂ + uθθ̂ + uϕϕ̂

)
= (u ·∇ui)êi −

u2
θ + u2

ϕ

r
r̂ +

(
uruθ
r
−
u2
ϕ cot θ

r

)
θ̂ +

(
uθuϕ cot θ

r
+
uruϕ
r

)
ϕ̂.

The last two terms in the cylindrical u ·∇u, equation (II.33), might look familiar to
you from working in rotating frames. Indeed, let us write u = v +RΩ(R, z)ϕ̂, where Ω
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is an angular velocity, and substitute this decomposition into (II.33):

u ·∇u =
[
(v +RΩϕ̂) ·∇vi

]
êi +

[
(v +RΩϕ̂) ·∇(RΩ)

]
ϕ̂

− (vϕ +RΩ)2

R
R̂+

vR(vϕ +RΩ)

R
ϕ̂

=

[(
v ·∇+Ω

∂

∂ϕ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rϕ̂(v ·∇)Ω

]
+

[
vRvϕ
R

ϕ̂−
v2ϕ
R
R̂

]
. (II.34)

Each of these terms has a straightforward physical interpretation. The first term in
brackets represents advection by the flow and the rotation. The second term in brackets
contains the Coriolis force, the centrifugal force, and ‘tidal’ terms due to the differential
rotation, in that order. (The ‘tidal’ terms can be thought of the fictitious acceleration
required for a fluid element to maintain its presence in the local rotating frame as it is
displaced radially or vertically. They come from Taylor expanding the angular velocity
about a point in the disk.) The third and final term in brackets captures curvature effects
due to the cylindrical geometry.

Exercise. Show that the Rϕ-component in cylindrical coordinates of the rate-of-strain tensor

Wij
.
=
∂ui
∂xj

+
∂uj
∂xi
− 2

3
δij
∂uk
∂xk

is given by

WRϕ =
1

R

∂uR
∂ϕ

+R
∂

∂R

uϕ
R
.

Hint: ∂ui/∂xj = [(êj ·∇)u] · êi is coordinate invariant.

II.4. Vorticity and Kelvin’s circulation theorem
With some vector identities in hand, let’s take the curl of the force equation (II.27b):

∇×
(
Du

Dt
= −1

ρ
∇P −∇Φ

)
.

The potential term vanishes, since the curl of a gradient is zero. Likewise, the pressure
term becomes

−∇1

ρ
×∇P =

1

ρ2
∇ρ×∇P.

As for the left-hand side, the gradient operator commutes with ∂/∂t, but not with u ·∇.
Instead,

∇×
[
(u ·∇)u

]
=∇×

[
1

2
∇u2 − u× (∇×u)

]
= −∇× (u×ω),

where
ω
.
=∇×u (II.35)

is the fluid vorticity. The vorticity measures how much rotation a velocity field has (and
its direction). Note that it is divergence free, which means that vortex lines cannot end
within the fluid – they must either close on themselves (like a smoke ring) or intersect
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a boundary (like a tornado). Any fresh vortex lines that are made must be created as
continuous curves that grow out of points or lines where the vorticity vanishes.

Assembling the above gives the vorticity equation,

∂ω

∂t
−∇× (u×ω) = 1

ρ2
∇ρ×∇P. (II.36)

Note that the right-hand side of this equation vanishes if the pressure is barotropic, i.e.,
if P = P (ρ), so that surfaces of constant density and constant pressure coincide. If these
surfaces do not coincide, then the fluid is said to have “baroclinicity” or to be “baroclinic”.
I’ll demonstrate below using mathematics what (II.36) means physically, but you already
know what the right-hand side means if you pay attention to the weather: areas of high
atmospheric baroclinicity have frequent hurricanes and cyclones. In the parlance of fluid
dynamics, this is called “baroclinic forcing”. Now back to the math. . .

Dot (II.36) into a differential surface element dS normal to the surface S of a fluid
element, integrate over that surface, and use Stokes’ theorem to replace the surface
integral of a curl with a line integral over the surface boundary ∂S:∫

S

∂ω

∂t
·dS −

∮
∂S

(u×ω) · d` =
∮
∂S

(
−1

ρ
∇P

)
· d` = −

∮
∂S

dP

ρ
.

Using (II.32) to replace the left-hand side by the Lagrangian time derivative of ω · dS
yields

D

Dt

∫
S
ω · dS = −

∮
∂S

dP

ρ
. (II.37)

The surface integral on the left-hand side of this equation may be expressed using Stokes’
theorem as the circulation Γ : ∫

S
ω · dS =

∮
∂S
u · d` .= Γ. (II.38)

The circulation around the boundary ∂S can be thought of as the number of vortex
lines that thread the enclosed area S. Equation (II.37) then states that the circulation is
conserved if the fluid is barotropic – Kelvin’s circulation theorem:6

DΓ

Dt
= −

∮
∂S

dP

ρ
= 0 if P = P (ρ) (II.39)

The figure below illustrates how baroclinic forcing generates vorticity.

ñp
- YIP > -YIPloup

"

xmhighp
Ip

✓ Mobius a torque about
✓ thecentwofuiassccom)

6The above manipulations require that the surface is simply connected – that is, the region must
be such that we can shrink the contour to a point without leaving the region. A region with a
hole (like a bathtub drain) is not simply connected.
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Exercise. The helicity of a region of fluid is defined to be H .
=
∫
ω ·u dV, where the integral

is taken over the volume of that region. Assume that Γ = const and that ω · n̂ vanishes when
integrated over the surface bounding V, where n̂ is the unit normal to that surface. Prove that
the helicity H is conserved in a frame moving with the fluid, viz. DH/Dt = 0. Note that the
fluid need not be incompressible for this property to hold.

The calculation leading to (II.39) can be repeated in a reference frame rotating at a
constant angular velocity Ω, in which the fluid velocity is measured to be v = u−Ω× r
(here, u is the fluid velocity in the inertial frame; see §II.3). The associated vorticity in
this rotating frame is

ωrot = ω−∇× (Ω× r) = ω−Ω(∇· r) + (Ω ·∇)r = ω− 3Ω +Ω = ω− 2Ω, (II.40)

where ω =∇×u. The circulation in the rotating reference frame is then given by

Γrot =

∫
S
ωrot · dS =

∫
S

(
ω − 2Ω

)
· dS

=

∮
∂S
u · d`−

∫
S
2Ω · dS

= Γ −
∫
S
2Ω · dS. (II.41)

Kelvin’s circulation theorem in this rotating frame is therefore

DΓrot

Dt
= −

∮
∂S

dP

ρ
− 2Ω

DSn
Dt

, (II.42)

where Sn is component of the surface area oriented normally to Ω. In words, if the
projected area of the vortex tube in the plane perpendicular to the rotation vector
changes, then the circulation in the rotating frame must change to compensate. This
is the origin of Rossby waves, something that will be discussed further in §II.5.2.

II.5. Rotating reference frames
The final calculation in the preceding section provides a natural segue into a discussion

of fluid dynamics in rotating reference frames. To begin this discussion, let us first
recall equation (II.34), in which the nonlinearity u ·∇u was written out in cylindrical
coordinates for a fluid velocity u consisting of a cylindrical rotation RΩϕ̂ with angular
velocity Ω = Ω(R, z) and a residual velocity v .

= u−RΩϕ̂:

u ·∇u =

[(
v ·∇+Ω

∂

∂ϕ

)
vi

]
êi +

[
2Ωẑ×v −RΩ2R̂+Rϕ̂(v ·∇)Ω

]
+

[
vRvϕ
R

ϕ̂−
v2ϕ
R
R̂

]
.

When this expansion was introduced in §II.3, each of its components were described
physically: ‘The first term in brackets represents advection by the flow and the rotation.
The second term in brackets contains the Coriolis force, the centrifugal force, and “tidal”
terms due to the differential rotation. . . The third and final term in brackets captures
curvature effects due to the cylindrical geometry.’ Let’s see these terms in action.

Using (II.34), we may express the equations of hydrodynamics (II.27) in cylindrical
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coordinates in a frame co-moving with the differential rotation. With

D

Dt
→ ∂

∂t
+ v ·∇+Ω

∂

∂ϕ
(II.43)

to include advection by the rotation, we have

Dρ

Dt
= −ρ∇·v, (II.44a)

DvR
Dt

= fR + 2Ωvϕ +RΩ2 +
v2ϕ
R
, (II.44b)

Dvϕ
Dt

= fϕ −
κ2

2Ω
vR −R

∂Ω

∂Z
vz −

vRvϕ
R

, (II.44c)

Dvz
Dt

= fz, (II.44d)

Ds

Dt
= 0, (II.44e)

where

f = −1

ρ
∇P −∇Φ (II.45)

and the combination

κ2
.
= 4Ω2 +

∂Ω2

∂ lnR
=

1

R3

∂(R4Ω2)

∂R
(II.46)

is known as the (square of the) epicyclic frequency. Note that R4Ω2 = `2, the square
of the specific angular momentum `, and so κ2 measures how much the specific angular
momentum associated with the rotation increases or decreases outwards. For Keplerian
rotation, κ2 = Ω2.

In §IV.7, these equations will be modified for the presence and evolution of magnetic
fields and used to look at linear waves and instabilities that rely on differential rotation. In
the meantime, I’ll close this portion of the notes by remarking on two useful applications
of what you’ve learned here: the thermal wind equation (§II.5.1) and Rossby waves
(§II.5.2).

II.5.1. Thermal wind equation
In steady state with v = 0, equations (II.44b) and (II.44d) become

0 = −1

ρ

∂P

∂R
− ∂Φ

∂R
+RΩ2 and 0 = −1

ρ

∂P

∂z
− ∂Φ

∂z
. (II.47)

Taking ∂/∂z of the first equation, using the second equation, and rearranging yields

R
∂Ω2

∂z
=
ϕ̂

ρ2
·
(
∇P ×∇ρ

)
. (II.48)

This is the ϕ̂ component of the vorticity equation. Note that, if ρ is constant or if
P = P (ρ), then the angular velocity Ω must be constant on cylinders (this is related to
von Zeippel’s theorem). Now, let us recall the definition of the hydrodynamic entropy,
s = (γ − 1)−1 lnPρ−γ and use it to replace ∇ ln ρ. The result is

R
∂Ω2

∂z
=
γ − 1

γ
ϕ̂ ·
(
∇s× 1

ρ
∇P

)
= ϕ̂ ·

(
1

ρ
∇P ×∇ lnT

)
. (II.49)
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In the Sun, g = (1/ρ)∇P is an excellent approximation, with only a tiny angular com-
ponent due to centrifugal effects. Adopting this simplification and working in spherical
coordinates (r, θ, ϕ), equation (II.49) becomes

R
∂Ω2

∂z
=
γ − 1

γ

g

r

∂s

∂θ
(II.50)

where g = GM/r2. [The right-hand side of (II.50) can also be written as−(g/r)∂ lnT/∂θ.]
Equation (II.50) is known as the thermal wind equation. It is used often in geophysical
applications (e.g., longitudinal entropy gradients driven by temperature differences cause
wind shear) and to understand the rotation profile in the convection zone of the Sun.

II.5.2. Rossby waves
Consider a two-dimensional, incompressible fluid on the surface of uniformly rotating

sphere (e.g., a planetary atmosphere). For a constant density or a barotropic equation of
state, equation (II.42) becomes

D

Dt

(
Γrot + 2ΩS cos θ

)
= 0, (II.51)

where θ is the angle between the rotation vector and the surface oriented normal to the
fluid element. (Note that incompressibility assures S = const.) This equation states that,
as a fluid element makes its way from the equator northwards (viz., from θ = π/2 towards
θ = 0), its circulation as measured in the rotating frame must decrease. This means that
the element must then rotate in the clockwise direction. Likewise, a fluid element that
starts at the north pole and moves southwards towards the equator (viz., from θ = 0
towards θ = π/2) increases its relative vorticity and thus rotates in the counterclockwise
direction.

With this behavior in mind, let’s now imagine a small-amplitude, wave-like disturbance
at constant latitude (see diagram below). Northward displacements in this wave acquire
negative relative vorticity and rotate clockwise; southward displacements acquire positive
relative vorticity and rotate counterclockwise. These changes in the velocity of the
disturbance actually feed back on the wave itself to make it travel westward; in effect,
the wave is advecting itself to the west.

N

E

�rot < 0
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The relationship between the frequency ω and wavevector k for this wave – the dispersion
relation – is given by

ω = − ky
k2x + k2y

2Ω sin θ

r
, (II.52)

where x denotes the local poloidal direction (pointing southward), y denotes the local
azimuthal direction (pointing eastward), and r the spherical radial distance. With Ω > 0
and ky > 0, the phase velocity of the wave ω/ky < 0, i.e., the wave travels westward. Note
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that the group velocity, ∂ω/∂ky, can be either positive or negative; in general, shorter
wavelengths (higher k) have an eastward group velocity and longer wavelengths (smaller
k) have a westward group velocity.

These waves are named after the meteorologist Carl Rossby, who derived the mathe-
matics governing this phenomenon in 1939 while at MIT (after which he became assistant
director of research at the U.S. Weather Bureau and then moved to University of Chicago
as Chair of the Department of Meteorology).7

PART III

Fundamentals of plasmas
Now that we have the fluid equations under our belts, let us discuss why we might
expect them to apply to a plasma (instead of the more familiar fluid). There are three
concepts to cover in this regard: Debye shielding and quasi-neutrality, plasma oscillations,
and collisional relaxation of the plasma to take on a Maxwell–Boltzmann distribution of
particle velocities.

III.1. Debye shielding and quasi-neutrality
In § I.1, we mentioned the concept of the Debye length and explained its importance in

the definition of a plasma. Here we actually derive it from first principles. This derivation
starts by recalling that a large plasma parameter Λ� 1 implies that the kinetic energy
of the plasma particles is much greater than the potential energy due to Coulomb
interactions amongst binary pairs of particles. In this case, the plasma temperature T is
much bigger than the Coulomb energy eφ ∼ e2/∆r ∼ e2n1/3, where φ is the electrostatic
potential, ∆r ∼ n−1/3 is the typical interparticle distance, and n is the number density
of the particles. Assuming a plasma in local thermodynamic equilibrium, the number
density of species α′ with charge qα′ sitting in the potential φα of one ‘central’ particle
of species α ought to satisfy the Boltzmann relation

nα′(r) = nα′ exp

(
−qαφα(r)

T

)
≈ nα′

(
1− qα′φα(r)

T

)
, (III.1)

where the potential φα(r) depends on the distance r from the ‘central’ particle. To obtain
the approximate equality, we have used the assumption T � eφα to Taylor expand the
Boltzmann factor in its small argument. Inserting (III.1) into the Gauss–Poisson law for
the electric field E = −∇φα, we have

∇·E = −∇2φα = 4πqαδ(r) + 4π
∑
α′

qα′nα′

≈ 4πqαδ(r) + 4π
∑
α′

qα′nα′ −

(∑
α′

4πnα′q
2
α′

T

)
︸ ︷︷ ︸

.
= λ−2

D

φα. (III.2)

The first term in (III.2) is the point-like charge of the ‘central’ particle located at r = 0.
The second term is the sum over all charges in the plasma, and equals zero if the plasma

7See https://images.peabody.yale.edu/publications/jmr/jmr02-01-06.pdf.

https://images.peabody.yale.edu/publications/jmr/jmr02-01-06.pdf
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is overall charge-neutral (as it should be). The final term introduces the Debye length
(see (I.2)), which is the only characteristic scale in (III.2). Note further that this equation
has no preferred direction, and so we may exploit its spherical symmetry to recast it as
follows:

1

r2
∂

∂r
r2
∂φα
∂r
− 1

λ2D
φα = 4πqαδ(r). (III.3)

The solution to this equation that asymptotes to the Coulomb potential φα → qα/r as
r → 0 and to zero as r →∞ is

φα =
qα
r

exp

(
− r

λD

)
(III.4)

This equation states that the bare potential of the ‘central’ charge is exponentially
attenuated (‘shielded’) on typical distances ∼λD. This is Debye shielding, and the sphere
of neutralizing charge accompanying the ‘central’ charge is referred to as the Debye
sphere (or cloud). Debye shielding of an ion by preferential accumulation of electrons in
its vicinity is sketched below:

Note that the electric field due to the polarization of the plasma in response to the ion’s
bare Coulomb potential acts in the opposite direction to the unshielded electric field.

Now, there was nothing particularly special about the charge that we singled out as
our ‘central’ charge. Indeed, we could have performed the above integration for any
charge in the plasma. This leads us to the fundamental tenet in the statistical mechanics
of a weakly coupled plasma with Λ � 1: every charge simultaneously hosts its own
Debye sphere while being a member of another charge’s Debye sphere. The key points
are that, by involving a huge number of particles in the small-scale electrostatics of the
plasma, these Coulomb-mediated relations (i) make the plasma ‘quasi-neutral’ on scales
�λD and (ii) make collective effects in the plasma much more important than individual
binary effects due to particle-particle pairings. The latter is what makes a plasma very
different from a neutral gas, in which particle-particle interactions occur through hard-
body collisions on scales comparable to the mean particle size.

One consequence of Debye shielding is that the electric fields that act on large scales
due to the self-consistent collective interactions between ∼Λ Debye clouds are smoothly
varying in space and time. As a result, when we write down Maxwell’s equations
for our quasi-neutral plasma, the fields that appear are these smooth, coarse-grained
fields whose spatial structure resides far above the Debye length. Mathematically, we
average the Maxwell equations over the microscopic (i.e., Debye) scales, and what
remains are the collective macroscopic fields that ultimately make their way into the
magnetohydrodynamics of the plasma ‘fluid’.
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III.2. Plasma oscillations

In the previous section, we spoke of a characteristic length scale below which particle-
particle interactions are important and above which they are supplanted by collective
effects between a large number of quasi-neutral Debye spheres. Is there a corresponding
characteristic time scale? The answer is yes, and it may be obtained simply by dimensional
analysis: take our Debye length and divide by a velocity to get time. The only velocity in
our plasma thus far is the thermal speed, vthα =

√
2T/mα, and so that must be it. . . we

have obtained the plasma frequency of species α,

ωpα
.
=

√
4πq2αnα
mα

∼ λD
vthα

. (III.5)

Of particular importance, given the smallness of the electron mass, is the electron plasma
frequency ωpe, which is ∼

√
mi/me larger than the ion plasma frequency and is generally

the largest frequency in a weakly coupled plasma.
Fine. Dimensional analysis works. But what does this frequency actually mean? Go

back to our picture of Debye shielding. That was a static picture, in that we waited long
enough for the plasma to settle down into charge distributions governed by Boltzmann
relations. What if we didn’t wait? Surely there was some transient process whereby the
particles moved around to configure themselves into these nice equilibrated Debye clouds.
There was, and this transient process is referred to as a plasma oscillation, and it has a
characteristic frequency of (you guessed it) ωpe. Let’s show this.

Imagine a spatially uniform, quasi-neutral plasma with well-equilibrated Debye clouds.
Shift all of the electrons slightly to the right by a distance ξ, as shown in the figure below:

The offset between the electrons and the ions will cause an electric field pointing from
the ions to the displaced electrons, given by E = 4πeneξ. The equation of motion for the
electrons is then

me
d2ξ

dt2
= −eE = −4πe2neξ = −meω

2
peξ =⇒ d2ξ

dt2
= −ω2

peξ. (III.6)

This is just the equation for a simple harmonic oscillator with frequency ωpe. So,
small displacements between oppositely charged species result in plasma oscillations
(or ‘Langmuir oscillations’), a collective process that occurs as the plasma attempts to
restore quasi-neutrality in response to some disturbance. Retaining the effects of electron
pressure makes these oscillations propagate dispersively with a non-zero group velocity;
these Langmuir waves have the dispersion relation ω2 ≈ ω2

pe(1 + 3k2λ2De), where k is the
wavenumber of the perturbation. More on that later.
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III.3. Collisional relaxation and the Maxwell–Boltzmann distribution
In order for the plasma particles to move freely as plasma oscillations attempt to set up

equilibrated Debye clouds, the mean free path between particle–particle collisions must
be larger than the Debye length. We may estimate the former in term of the collision
cross-section σ,

λmfp ∼
1

nσ
∼ T 2

ne4
,

where the cross-section σ = πb2 is given by a balance between the Coulomb potential
energy, ∼e2/b, across some typical impact parameter b and the kinetic energy of the
particles, ∼T . Comparing this mean free path to the Debye length (I.2), we find

λmfp

λD
∼ T 2

ne4

(
ne2

T

)1/2

∼ nλ3D
.
= Λ� 1.

Thus, a particle can travel a long distance and experience the macroscopic fields exerted
by the collective electrodynamics of the plasma before being deflected by much the
shorter-range, microscopic electric fields generated by another individual particle (recall
(I.9)).

The scale separation between the collisional mean free path and the Debye length due
to the enormity of the plasma parameter in a weakly coupled plasma says something
very important about the statistical mechanics of the plasma. Because λmfp/λD ∼
ωpeτei � 1, the particle motions are randomized and the velocity distribution of the
plasma particles relaxes to a local Maxwell–Boltzmann distribution on (collisional)
timescales that are much longer than the timescale on which particle correlations are
established and Coulomb potentials are shielded. As a result, collisions in the plasma
occur between partially equilibrated Debye clouds instead of between individual particles,
the mathematical result being that the ratio λmfp/λD is attenuated by a factor ∼ lnΛ ≈
10–40. Thus, the logarithmic factors in the collision times (I.7) and (I.8).

Now, about this collisional relaxation. This school isn’t the place to go through all the
details of how collision operators are derived, but we need to establish a few facts. First,
because of Debye shielding, the vast majority of scatterings that a particle experiences
as it moves through a plasma are small-angle scatterings, with each event changing the
trajectory of a particle by a small amount. These accumulate like a random walk in angle
away from the original trajectory of the particle, with an average deflection angle 〈θ〉 = 0
but with a mean-square deflection angle 〈θ2〉 proportional to the number of scattering
events. For a typical electron scattering off a sea of Debye-shielded ions of charge Ze and
density n, this angle satisfies

〈θ2〉 ≈ 8πnLZ2e4

m2
ev

4
the

lnΛ (III.7)

after the electron has traversed a distance L. A large deflection angle, i.e. 〈θ2〉 ∼ 1, is
reached once this distance

L ∼ m2
ev

4
the

8πnZ2e4
1

lnΛ
∼ vtheτei

.
= λmfp,e, (III.8)

the collisional mean free path (recall the definition of the electron–ion collision time,
equation (I.7)). Noting that the impact parameter for a single 90-degree scattering
is ∼Ze2/T , we find the ratio of the cross-section for many small-angle scatterings to
accumulate a 90-degree deflection, σmulti,90◦ ∼ 1/nL using (III.8), to the cross-section
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for a single 90-degree scattering, σsingle,90◦ = πb2 with b ∼ Ze2/T , is
σmulti,90◦

σsingle,90◦
∼ lnΛ� 1. (III.9)

Thus, in a weakly coupled plasma, multiple small-angle scatterings are more important
than a single large-scale scattering. Visually,

This is the physical origin of the lnΛ reduction in collision time mentioned in the prior
paragraph.

So what do these collisions mean for treating our plasma as a fluid? If λmfp is
much less than any other macroscopic scale of dynamical interest (i.e., scales on which
hydrodynamics occurs), then the velocity distribution function f(v) of the plasma – that
is, the differential number of particles with velocities between v and v + dv – is well
described by a Maxwell–Boltzmann distribution (often simply called a ‘Maxwellian’):

fM(v)
.
=

n

π3/2v3th
exp

(
− v

2

v2th

)
. (III.10)

The factor of π3/2v3th is there for normalization purposes:∫
d3v fM(v) = 4π

∫
dv v2fM(v) = n (III.11)

is the number of particles per unit volume. (Any particle distribution function should
satisfy this constraint.) Note that the Maxwellian is isotropic in velocity space, depending
only on the speed of the particles (rather than their vector velocity). If these particles
are all co-moving with some bulk velocity u, then this ‘fluid’ velocity is subtracted off to
ensure an isotropic distribution function in that ‘fluid’ frame:

fM(v)
.
=

n

π3/2v3th
exp

(
−|v − u|

2

v2th

)
. (III.12)

Note that the first moment of this distribution∫
d3v vfM(v) = nu; (III.13)

and that the (mass-weighted) second moment of this distribution∫
d3vm|v − u|2fM(v) = 3P. (III.14)

(Again, any velocity distribution function should satisfy these constraints.)
Different species collisionally relax to a Maxwellian at different rates (e.g., τee ∼

τei ∼
√
mi/me τii ∼ (mi/me)τie), and so each species may be described by their own

Maxwellians:

fM,α(v)
.
=

nα
π3/2v3thα

exp

(
−|v − uα|

2

v2thα

)
. (III.15)

But, in the long-time limit, unless some process actively dis-equilibrates the species on a
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timescale comparable to or smaller than these collision times, all species will take on the
same u and the same T . Their densities are, of course, the same as well, as guaranteed
by quasi-neutrality (viz., ωpeτ � 1 for all collision times τ).

Note then, that when we wrote down our hydrodynamic equations for a scalar pressure
(see (II.14) and (II.17)) and didn’t affix any species labels to any quantities, we were
implicitly assuming that our hydrodynamics occurs on time scales much longer than
the collisional equilibration times, so that all species can be well described by local
Maxwellians with the same density, fluid velocity, and temperature. Not all astrophysical
systems are so cooperative, and anisotropic pressures, velocity drifts between species,
and dis-equilibration of species temperatures can often be the norm. Yes, hydrodynamics
and MHD are fairly simple, but do not let their simplicity lure you into using them when
it’s not appropriate to do so – a hard-earned lesson for many astrophysicists.

PART IV

Linear theory of MHD instabilities
Dr. Tolman did some MHD linear waves. Now let’s do some MHD linear instabilities.
Start with the ideal-MHD equations:

Dρ

Dt
= −ρ∇·u, (IV.1a)

Du

Dt
= −1

ρ
∇
(
P +

B2

8π

)
+

(B ·∇)B

4πρ
−∇Φ, (IV.1b)

DB

Dt
= (B ·∇)u−B(∇·u), (IV.1c)

P

γ − 1

D

Dt
ln
P

ργ
= 0, (IV.1d)

where D/Dt
.
= ∂/∂t+ u ·∇ is the Lagrangian derivative. A rarely publicized but useful

form of the induction equation (IV.1c) is obtained by defining the magnetic-field unit
vector b̂ .

= B/B and writing separate equations for it and the magnetic-field strength B:

D lnB

Dt
=
(
b̂b̂− I

)
:∇u and

Db̂

Dt
=
(
I − b̂b̂

)
:
(
b̂ ·∇u

)
. (IV.2)

Just thought I’d throw that out there for you to chew on.
The program is to set up some equilibria and then subject them to small-amplitude

perturbations in the fluid and magnetic field. There are a few different ways of doing this
and assessing whether the system is stable or unstable to these perturbations. There’s
something called the MHD energy principle, which will tell you whether a given set of
perturbations about some equilibrium state will bring the system profitably to a lower
energy state. There’s something called Eulerian perturbation theory, where you subject
the equilibrium state to small-amplitude perturbations, formulate those perturbations in
the lab frame, and ask whether the perturbations oscillate, grow, or decay. And there’s
something called Lagrangian perturbation theory, which is same as Eulerian perturbation
theory but is formulated in the frame of fluid. Each of these has its advantages depending
on the equilibrium state, boundary conditions, and questions being asked. Eulerian
perturbation theory is the most straightforward procedure, so we’ll start there.
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IV.1. A primer on instability
Before attacking the MHD equations, though, let’s do something simpler to establish

notation and learn the procedure. Consider the following ordinary differential equation:

d2x

dt2
+ 2ν

dx

dt
+Ω2(x− x0) = 0, (IV.3)

where ν and Ω > 0 are constants. You may recognize this as the equation for a damped
simple harmonic oscillator of natural frequency Ω whose velocity along the x axis is
damped at a rate ν > 0. But let’s not yet commit to any particular sign of ν. First, the
equilibrium state. This is easy: the oscillator is at rest at x = x0. We now displace the
oscillator by a small amount ξ, so that x(t) = x0 + ξ(t). The equation governing this
displacement is

d2ξ

dt2
+ 2ν

dξ

dt
+Ω2ξ = 0. (IV.4)

This equation admits solutions ξ ∼ exp(−iωt), where ω is a complex frequency that
satisfies the dispersion relation

ω2 + 2iων −Ω2 = 0 =⇒ ω = −iν ±
√
Ω2 − ν2. (IV.5)

How do we assess stability? If the imaginary part of ω is positive, then −iω has a positive
real part, and the displacements will grow exponentially in time. If the imaginary part
of ω is negative, then −iω has a negative real part, and this corresponds to exponential
decay of the perturbation. If ω additionally has a real part, then this represents a growing
or decaying oscillator. It’s clear from a cursory glance at the dispersion relation (IV.5)
that the perturbations oscillate and decay exponentially if Ω > ν > 0. If ν > Ω > 0,
then the perturbations decay without oscillating. But if ν < 0, then there is always an
exponentially growing solution. Thus, ν > 0 is the stability criterion for this system.

Now, suppose the equation of interest were instead

d2x

dt2
+ 2ν

dx

dt
+Ω2 sin(x− x0) = 0. (IV.6)

The equilibrium is still the same, but if we want simple harmonic oscillator solutions,
we’re only go to get them if the displacement is small, i.e., |ξ| � x0. In that case, we can
Taylor expand sin(x − x0) ≈ ξ − ξ3/6 + . . . . To leading order in ξ, we’re back to where
we started with (IV.4). This is linear theory: identify an equilibrium, perturb the system
about that equilibrium, and drop all terms nonlinear in the perturbation amplitude.

Note that we are not solving an initial value problems. We are agnostic about the
initial conditions and only ask whether some disturbance will ultimately grow or decay.
In some situations (most notably, Landau damping), solving the initial value problem
is absolutely essential to obtain the full solution and all the physics involved. But if
you just want to calculate the wave-like response of a system to infinitesimally small
perturbations and learn whether such a response grows or decays, you need only adopt
solutions ∼ exp(−iωt), find the dispersion relation for ω vs k, and examine the sign of its
imaginary part. (The difference is related to a Laplace vs a Fourier transform in time.)

IV.2. Linearized MHD equations
Take (IV.1) and write

ρ = ρ0(r) + δρ(t, r), u = δu(t, r), P = P0(r) + δP (t, r), B = B0(r) + δB(t, r);



26 M. W. Kunz

i.e., consider a stratified, stationary equilibrium state threaded by a magnetic field and
subject it to perturbations. Never mind how the equilibrium is set up – it is what it is,
and we’ll perturb it. Neglecting all terms quadratic in δ, equations (IV.1) become

∂δρ

∂t
= −(δu ·∇)ρ0 − ρ0(∇· δu), (IV.7)

∂δu

∂t
= − 1

ρ0
∇
(
δP +

B0 · δB
4π

)
+
δρ

ρ20
∇
(
P0 +

B2
0

8π

)
+

(B0 ·∇)δB

4πρ0
+

(δB ·∇)B0

4πρ0
−∇δΦ, (IV.8)

∂δB

∂t
= −(δu ·∇)B0 + (B0 ·∇)δu−B0(∇· δu), (IV.9)

∂

∂t

(
δP

P0
− γ δρ

ρ0

)
= −δu ·∇ ln

P0

ργ0
. (IV.10)

(A quick way of getting these is to think of δ as a differential operator that commutes with
partial differentiation.) Pretty much every gradient of an equilibrium quantity here will
give an instability! (Otherwise, you just get back simple linear waves on a homogeneous
background.) So let’s not analyze this all at once. But I write this system of equations here
for two important reasons: (i) it makes clear that we can adopt solutions δ ∼ exp(−iωt)
for the perturbations, since the equations are linear in the fluctuation amplitudes; (ii) we
can only adopt full plane-wave solutions δ ∼ exp(−iωt + ik · r) if the fluctuations vary
on length scales much smaller than that over which the background varies (the so-called
WKB approximation). Otherwise, we have to worry about the exact structure of the
background gradients and their boundary conditions.

So these are the themes of most linear stability analyses: a WKB approximation
whereby plane-wave solutions are assumed on top of a background state that is slowly
varying, and a focus only on whether fluctuations grow or decay rather than their specific
spatio-temporal evolution from a set of initial conditions.

IV.3. Lagrangian versus Eulerian perturbations
There is one last thing worth discussing before proceeding with a linear stability

analysis of the MHD equations. Just as there is an Eulerian time derivative and a
Lagrangian time derivative, there is Eulerian perturbation theory and Lagrangian per-
turbation theory. The former, in which perturbations are denoted by a ‘δ’, measures
the change in a quantity at a particular point in space. For example, if the equilibrium
density at r, ρ(r), is changed at time t by some disturbance to become ρ′(t, r), then we
denote the Eulerian perturbation of the density by

ρ′(t, r)− ρ(r) .= δρ� ρ(r). (IV.11)

Again, these perturbations are taken at fixed position. The latter – Lagrangian pertur-
bation theory – concerns the evolution of small perturbations about a background state
within a particular fluid element as it undergoes a displacement ξ. For example, if a
particularly fluid element is displaced from its equilibrium position r to position r + ξ,
then the density of that fluid element changes by an amount

ρ′(t, r + ξ)− ρ(r) .= ∆ρ. (IV.12)

This is a Lagrangian perturbation. To linear order, δ and ∆ are related by

∆ρ ' ρ′(t, r) + ξ ·∇ρ(r)− ρ(r) = δρ+ ξ ·∇ρ. (IV.13)
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There are many situations in which a Lagrangian approach is easier to use than an
Eulerian approach; there are also some situations in which doing so is absolutely necessary
(e.g., see §IIIe of Balbus (1988) and §Ic of Balbus & Soker (1989) for discussions of the
perils of using Eulerian perturbations in the context of local thermal instability).

Question: It is possible to have zero Eulerian perturbation and yet have finite Lagrangian
perturbation. What does this mean physically? Is there a physical change in the system?

The Lagrangian velocity perturbation ∆u is given by

∆u
.
=

Dξ

Dt
=

(
∂

∂t
+ u ·∇

)
ξ, (IV.14)

where u is the background velocity. It is the instantaneous time rate of rate of the
displacement of a fluid element, taken relative to the unperturbed flow. Because ∆u =
δu+ ξ ·∇u, we have

δu =
∂ξ

∂t
+ u ·∇ξ − ξ ·∇u. (IV.15)

Note the additional ξ ·∇u term, representing a measurement of the background fluid
gradients by the fluid displacement.

Exercise. Let u = RΩ(R)ϕ̂, as in a differentially rotating disk in cylindrical coordinates.
Consider a displacement ξ with radial and azimuthal components ξR and ξϕ, each depending
upon R and ϕ. Show that

DξR
Dt

= δuR and
Dξϕ
Dt

= δuϕ + ξR
dΩ

d lnR
. (IV.16)

The second term in the latter equation accounts for the stretching of radial displacements into
the azimuthal direction by the differential rotation.

You can think of δ and ∆ as difference operators, since we’re only working to linear
order in the perturbation amplitude: e.g.,

δ

(
1

ρ

)
=

1

ρ+ δρ
− 1

ρ
' −δρ

ρ2
.

But you must be very careful when mixing Eulerian and Lagrangian points of view. Prove
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the following commutation relations:

(i)

[
δ,

∂

∂t

]
= 0;

(ii)

[
δ,

∂

∂xi

]
= 0;

(iii)

[
∆,

∂

∂t

]
= −∂ξj

∂t

∂

∂ξj
;

(iv)

[
∆,

∂

∂xi

]
= −∂ξj

∂xi

∂

∂ξj
;

(v)

[
∆,

D

Dt

]
= 0;

(vi)

[
∆,

D

Dxi

]
= −ξj

∂

∂xj

D

Dt
;

(vii)

[
∂

∂xi
,
D

Dt

]
=
∂uj
∂xi

∂

∂xj
.

You can use these to show that the linearized continuity equation, induction equation,
and internal energy equation are

∆ρ

ρ
= −∇· ξ, (IV.17)

∆B = B ·∇ξ −B∇· ξ, (IV.18)
∆T

T
= −(γ − 1)∇· ξ, (IV.19)

respectively. These forms are particularly useful for linear analyses.
Now to calculate something. . .

IV.4. Self-gravity: Jeans instability
One of the simplest hydrodynamical waves is a small-amplitude sound wave propagat-

ing on an infinite, homogeneous background. Take (IV.1), set B0 = 0, and assume ρ0
and P0 to be constant. The resulting linearized equations are

∂

∂t

δρ

ρ0
= −∇· δu, ∂δu

∂t
= − 1

ρ0
∇δP −∇δΦ, ∂

∂t

(
δP

P0
− γ δρ

ρ0

)
= 0. (IV.20a)

I’ve retained the perturbed gravitational potential δΦ in the second equation, because
we’re going to assume that the fluid is self-gravitating with a potential that obey’s
Poisson’s equation:8

∇2δΦ = 4πGδρ. (IV.20b)
These equations are linear in δ, and so we may adopt plane-wave solutions,
δ ∼ exp(−iωt+ ik · r). Substituting this form into (IV.20) gives

−iωδρ
ρ0

= −ik · δu, −iωδu = −ik δP
ρ0
− ikδΦ, −iω

(
δP

P0
− γ δρ

ρ0

)
= 0, (IV.21a)

8Wouldn’t an infinite, homogeneous, self-gravitating fluid collapse under its own weight? Indeed
it would. Ignoring this inconvenience is known as the Jeans swindle. Following Binney &
Tremaine (1987): ‘it is a swindle because in general there is no formal justification for discarding
the unperturbed gravitational field’.
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−k2δΦ = 4πGδρ. (IV.21b)

Taking k · the second equation and using the other three yields the dispersion relation

ω
(
ω2 − k2a2 + 4πGρ0

)
= 0, (IV.22)

where a2 .
= γP0/ρ0. The ω = 0 root comes from the perturbed entropy equation, and

corresponds to a isentropic relabelling of the fluid elements; its name is the ‘entropy
mode’. The other two roots correspond to forward- and backward-propagating sound
waves under the influence of their own self-gravity:

ω = ±ka
√
1− 4πGρ0

k2a2
(IV.23)

Self-gravity reduces the speed of the wave for wavenumbers satisfying ka > (4πGρ0)
1/2,

for which the (expansive) pressure force is greater than the (attractive) gravitational
force. At ka = (4πGρ0)

1/2, these two forces balance exactly, and the mode is neutrally
stable. But for ka < (4πGρ0)

1/2, the wavelength is long enough to include a sufficiently
large amount of mass in the perturbation to overwhelm the pressure force. Instability
ensues, and the mode grows without propagating. This is the Jeans instability, named
after Sir James Jeans (although Sir Isaac Newton understood the concept over 200 years
before the calculation).

The critical wavelength

λJ = a

√
π

Gρ0
(IV.24)

is referred to as the Jeans length. For an isothermal (γ = 1) molecular cloud of temper-
ature 10 K, number density 200 cm−3, and mean mass per particle 2.33mp, the Jeans
length is '1.5 pc. The corresponding Jeans mass enclosed within a spherical volume with
λJ as its diameter is

MJ =
π

6
ρ0λ

3
J = 20.3

(
T0

10 K

)3/2(
n

200 cm−3

)−1/2
M�. (IV.25)

Giant molecular clouds with these parameters have typical masses &104 M�, indicating
that more must be going on than just thermal pressure support against self-gravity (see:
magnetic fields and turbulence). Note that MJ =M� at a density n ' 8.2× 104 cm−3.

IV.5. Buoyancy: Convective (Schwarzschild) instability
Next up: stratification. Henceforth, ignore self-gravity. Suppose our plasma is immersed

in a constant, externally imposed gravitational field g = −gẑ and that its thermal-
pressure gradient balances the gravitational acceleration to produce a stationary, equi-
librium state. Ignoring for the moment magnetic fields, this hydrostatic equilibrium is
described by the equation

1

ρ0

dP0

dz
= g = const, (IV.26)
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where ρ0 = ρ0(z). The hydrodynamic equations linearized about this equilibrium are

∂

∂t

δρ

ρ0
+∇· δu+ δuz

d ln ρ0
dz

= 0, (IV.27)

∂δu

∂t
= − 1

ρ0
∇δP − δρ

ρ0
gẑ, (IV.28)

∂

∂t

(
δP

P0
− γ δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (IV.29)

Solutions to this set of equations are ∝ exp(−iωt):

−iωδρ
ρ0

+∇· δu+ δuz
d ln ρ0
dz

= 0, (IV.30)

−iωδu = − 1

ρ0
∇δP − δρ

ρ0
gẑ, (IV.31)

−iω
(
δP

P0
− γ δρ

ρ0

)
+ δuz

d

dz
ln
P0

ργ0
= 0. (IV.32)

Continued on hand-written notes. . .





























Kunz Lecture Notes for GPAP School 44

IV.6. Buoyancy: Parker instability
Continued on hand-written notes. . .
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IV.7. Rotation
In §II.5, we wrote down the equations of hydrodynamics in a rotating frame – see

(II.44). Here we do the same for the equations of MHD. With v = u−RΩ(R, z)ϕ̂ and

D

Dt

.
=

∂

∂t
+ v ·∇+Ω

∂

∂ϕ
,

the continuity and force equations are the same,

Dρ

Dt
= −ρ∇·v, (IV.33)

DvR
Dt

= fR + 2Ωvϕ +RΩ2 +
v2ϕ
R
, (IV.34)

Dvϕ
Dt

= fϕ −
κ2

2Ω
vR −R

∂Ω

∂z
vz −

vRvϕ
R

, (IV.35)

Dvz
Dt

= fz, (IV.36)

but with the addition of the Lorentz force:

f = −1

ρ
∇
(
P +

B2

8π

)
+
B ·∇Bi
4πρ

êi +
BRBϕ
4πρR

ϕ̂−
B2
ϕ

4πρR
R̂−∇Φ. (IV.37)

Note the additional geometric terms ∝B2/R; these are tension forces associated with the
bend in the magnetic-field lines as they follow the azimuthal direction. To these equations
we must append the induction equation:

DBR
Dt

= −BR∇·v +B ·∇vR, (IV.38)

DBϕ
Dt

= −Bϕ∇·v +B ·∇vϕ +
∂Ω

∂ lnR
BR +R

∂Ω

∂z
Bz, (IV.39)

DBz
Dt

= −Bz∇·v +B ·∇vz. (IV.40)

With the exception of advection by the differential rotation, the only additions to the
induction equation beyond its more customary Cartesian form appear in its azimuthal
component: + RB ·∇Ω on the right-hand side. This corresponds to stretching of the
flux-frozen magnetic field by the differential rotation.

In the hand-written pages that follow, these equations are used to describe the evolution
of small fluctuations about a homogeneous, differentially rotating disk with Ω = Ω(R),
in which the centrifugal acceleration RΩ2 is balanced by gravity −∂Φ/∂R. If the latter
is dominated by that of a central point mass M , we have Φ = −GM/R and so Ω =
(GM/R3)1/2 – i.e., Keplerian rotation.

Before proceeding, I’ll write down the linearized MHD equations written in cylindrical
coordinates (R,ϕ, z) in a rotating frame with Ω = Ω(R, z)ẑ. The only assumptions here
are that the background magnetic field is uniform, and that the equilibrium state arises
from a balance between the centrifugal force and gravity plus thermal-pressure gradients
(i.e., we allow for density and pressure stratification in the background state). We also
neglect curvature terms of order ∼(v2A/R)(δB/B), as these are small compared to the
other terms unless the toroidal magnetic field is super-thermal by a factor ∼(R/H)1/2,
where H ∼ cs/Ω is the disk thickness and cs is the sound speed – an atypical situation.
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Without further ado. . .(
∂

∂t
+Ω

∂

∂ϕ

)
δρ = −(δv ·∇)ρ− ρ(∇· δv), (IV.41)(

∂

∂t
+Ω

∂

∂ϕ

)
δvR = −1

ρ

∂

∂R

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂R
+

(B ·∇)δBR
4πρ

− ∂δΦ

∂R

− 2Ωδvϕ, (IV.42)(
∂

∂t
+Ω

∂

∂ϕ

)
δvϕ = − 1

ρR

∂

∂ϕ

(
δP +

B · δB
4π

)
+
δρ

ρ

1

ρR

∂P

∂ϕ
+

(B ·∇)δBϕ
4πρ

− 1

R

∂δΦ

∂ϕ

+
κ2

2Ω
δvR +R

∂Ω

∂z
δvϕ, (IV.43)(

∂

∂t
+Ω

∂

∂ϕ

)
δvz = −

1

ρ

∂

∂z

(
δP +

B · δB
4π

)
+
δρ

ρ2
∂P

∂z
+

(B ·∇)δBz
4πρ

− ∂δΦ

∂z
(IV.44)(

∂

∂t
+Ω

∂

∂ϕ

)
δBR = (B ·∇)δvR −BR(∇· δv), (IV.45)(

∂

∂t
+Ω

∂

∂ϕ

)
δBϕ = (B ·∇)δvϕ −Bϕ(∇· δv) +

∂Ω

∂ lnR
δBR +R

∂Ω

∂z
δBz, (IV.46)(

∂

∂t
+Ω

∂

∂ϕ

)
δBz = (B ·∇)δvz −Bz(∇· δv), (IV.47)(

∂

∂t
+Ω

∂

∂ϕ

)
δσ = −δvR

∂ lnPρ−γ

∂R
− δvz

∂ lnPρ−γ

∂z
, (IV.48)

where δσ .
= δP/P − γδρ/ρ.
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