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Some additional notes on magnetic reconnection

Magnetic reconnection refers to the topological rearrangement of magnetic-field lines
that converts magnetic energy to plasma energy. In these lecture notes, we will assume
that such a rearrangement is facilitated by a spatially constant Ohmic resistivity, as
might occur in a well-ionized collisional fluid:

@B

@t

= r⇥ (u⇥B) + ⌘r2B.

This assumption is obviously not warranted in hot, dilute astrophysical systems, such as
the collisionless solar wind, or in poorly ionized systems, like molecular clouds and pre-
stellar cores. But let us assume this anyhow, knowing that (i) the physics of reconnection
in even the simplest of systems is surprisingly rich and complex, and (ii) there is a
huge amount of literature on all aspects of magnetic reconnection in a wide variety of
environments. This part of the lecture notes is not intended as a replacement of that
literature, nor a synopsis of current research in the field (particularly in the laboratory
and the Earth’s magnetosheath). What follows is an incomplete presentation of a few key
highlights in the theory of magnetic reconnection, which will hopefully provide enough
pedagogical value and inspiration to encourage you to dig into the literature further. For
that, I recommend that you start with the excellent review articles by Zweibel & Yamada
(2009), Yamada et al. (2010), and Loureiro & Uzdensky (2016).

.1. Tearing instability

.1.1. Formulation of the problem
We begin by analyzing the stability of a simple stationary equilibrium in which the

magnetic field reverses across x = 0:

B
0

= B

y

(x)

ˆy +B

g

ˆz, (.1)

where B

y

(x) is an odd function and B

g

= const denotes the guide field. A oft-employed
profile for B

y

(x) is the Harris (1962) sheet:

B

y

(x) = B

r

tanh

⇣
x

a

⌘
, (.2)

where B

r

is the asymptotic value of the reconnecting field and a is the characteristic
scale length of the current sheet. Its profile, and the associated current density j

z

=

(B

r

/a) sech

2

(x/a), are shown in the figure below:
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The quickest route through the tearing calculation employs the “reduced MHD” (RMHD)
equations governing the evolution of the stream and flux functions � and  , respectively,
whose gradients describe the (incompressible) velocity and magnetic fields perpendicular
to the guide-field axis, ˆz:1

u? =

ˆz⇥r?�,
B?p
4⇡⇢

=

ˆz⇥r? . (.3)

Thus, B
y

(x)/

p
4⇡⇢ =  

0
0

for some equilibrium  

0

(x). If B
y

(x) is taken to be the Harris-
sheet profile (.2), then  

0

= av

A,r

ln[cosh(x/a)], where v

A,r

.

= B

r

/

p
4⇡⇢ is the Alfvén

speed associated with the reconnecting field. The RMHD equations are
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where the Poisson bracket

{�, } .

=

ˆz ·
�
r?�⇥r? 

�
. (.6)

The first equation (.4) is essentially the induction equation, which includes (from left
to right) the time rate of change of the magnetic field, the non-linear advection of the
magnetic field by the flow, the linear stretching of the magnetic field by Alfvénic motions,
and diffusion by a constant Ohmic diffusivity ⌘. The second equation (.5) is technically
an equation for the flow vorticity ! = r⇥u, but you can think of it as containing all the
same physics as the momentum equation: from left-to-right, the time rate of change of
the fluid velocity, the non-linear advection of the velocity by the flow, the linear restoring
tension force from the magnetic field on the velocity, and the stress acting on the flow
due to the non-linear part of the Lorentz force.

The equilibrium (.1) is perturbed by small fluctuations having no variation along the
guide field and a sinusoidal variation along the reconnecting field:

� = �(x)e

iky+�t

,  =  

0

(x) +  (x)e

iky+�t

, (.7)

where k is the wavenumber and � is the rate at which perturbations will grow or
decay. Substituting (.7) into (.5) and (.4) and retaining terms of only linear order in
the fluctuation amplitudes, we have
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� k

2

◆
 . (.9)

The trick to solving this set of equations is to realize that, as ⌘ tends towards zero, the

1RMHD refers to a reduction of the standard MHD equations that separates Alfvén-wave
physics from the physics of compressive (i.e. magnetosonic) fluctuations. It does so formally
by stipulating that the characteristic scale along the mean magnetic-field direction of the
fluctuations is much larger than the characteristic scale across that direction (among other
assumptions either related to the plasma � parameter or to the size of the fluctuations relative
to the mean field). But for the purposes of this presentation of tearing mode theory, you can
think of these RMHD equations as simply MHD in an incompressible (r ·u = 0) plasma with
the stipulation that Alfvénic physics triumphs. The practical mathematical outcome is that
the velocity and magnetic field oriented perpendicularly to the guide magnetic field may be
expressed in terms of potential functions.
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derivative on the right-hand side of (.9) must grow to balance the terms on the left-hand
side. In other words, a boundary layer forms about x = 0, outside of which the system
satisfies the ideal-MHD equations and inside of which the resistivity is important. The
width of this boundary layer is customarily denoted �

in

, and much of reconnection theory
rests on determining its size given the various attributes of the host plasma. To do so, we
will first solve (.8) and (.9) in the “outer region”, where the resistivity is negligible and
the system behaves as though it were ideal. Then they will be solved in the “inner region”,
where the resistivity dominates and k ⇠ a

�1 ⌧ d/dx ⇠ �

�1

in

. The two solutions must
asymptotically join onto one another; this matching, along with boundary conditions at
x = 0 and ±1, will determine the full solution.

Before proceeding with this program, it will be advantageous to define the resistive
and Alfvén timescales,

⌧
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, (.10)

respectively. We will assume ⌧�1

⌘

⌧ � ⌧ ⌧

�1

A

, i.e. the tearing mode grows faster than it
takes for the entirety of the current sheet to resistively diffuse but slower than it takes
for an Alfvén wave to cross k

�1. Physically, this implies that the outer solution results
from neglecting the plasma’s inertia and Ohmic resistivity.

.1.2. Outer equation
Adopting the ordering ⌧�1

⌘
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, equations (.8) and (.9) reduce to
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Note that  000
0
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0
0

= B

00
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/B

y

measures the gradient of the current density, and so different
current-sheet profiles will result in different solutions to (.11). Regardless of the exact
current-sheet profile, however, both �

out

and  

out

must tend to zero as x ! ±1. Also,
since the y-component of the perturbed magnetic field must reverse direction at x = 0,
 

out

must have a discontinuous derivative there, corresponding to a singular current.
Indeed, it is this discontinuity that characterizes the free energy available to reconnect,
quantified by the tearing-instability parameter
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, (.12)

and that ultimately warrants consideration of a resistive inner layer.

.1.3. Inner equation
In the inner region where k ⌧ d/dx ⇠ �

�1

in

, the dominant terms in (.8) and (.9) are
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These equations may be solved analytically provided some amenable form of  0
0

. Because
we are deep within the current sheet, the leading-order term in a Taylor expansion will
suffice, viz.,  0

0

⇡  

00
0

(0)x = v

A,r

(x/a). Then (.13) and (.14) may be straightforwardly
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combined to obtain
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With some effort, this equation can actually be solved for  
in

analytically. I’ll show you
how below. But even without that effort, equation (.15) may be used to estimate the
width of the boundary layer, �

in

:

1 ⇠ (�a⌧
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Note that �
in

depends on k – each tearing mode k has a different boundary-layer width;
because of this, each k will correspond to a different �0.

Normalizing lengthscales to �
in

by introducing ⇠ .

= x/�

in

, equation (.15) may be written
as
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where the eigenvalue ⇤ .

= �

3/2
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2

in

/⌘ is the growth rate of the tearing mode
normalized by the rate of resistive diffusion across a layer of width �

in

. Provided we can
solve (.17), the solution  

in

must be matched onto the outer solution  
out

. This is done
by equating the discontinuity in  

out

, quantified by �0 (see (.12)), to the total change in
d 

in

/dx across the inner region, viz.,
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.

(The factor of 2 is because the solution is odd, and so the total change across the x = 0

surface is twice the change measured for x > 0.) The upper limit on the integral can be
extended to +1 by committing only a ⇠10% error:
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0
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. (.18)

So, find  (⇠) by solving the inner equation (.17), compute the integral in (.18), and invert
the answer to obtain the growth rate in terms of �0.

Before carrying out that program, it will be useful to further simply (.17) by introducing

�(⇠)

.
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�
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�

�
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Integrating this equation once and, for reasons that will eventually become apparent,
setting the integration constant to ��1, we find
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Once this equation is solved, the inner solution is obtained using (cf. (.19))
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(x)

x
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which may then be plugged into (.18) to compute �0.
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.1.4. Approximate solutions
There are a few ways to solve (.11) and (.21), none of which are particularly obvious.

However, it’s possible to obtain scaling laws for �0 and the tearing-mode growth rate
� without actually doing so. In fact, the answers obtained in this way differ from those
obtained by a more mathematically rigorous solution (see §.1.5) by only order-unity
coefficients. Nice.

We start with (.11), the outer equation. With some knowledge that the fastest-growing
modes occur at long wavelengths (ka ⌧ 1), we can make some progress by simply
dropping the middle term in (.11). Then, so long as B

y

varies faster within |x| . a

than it does at |x| � a, we can estimate

�

0 ⇠ 1

ka

2

. (.23)

(This scaling is exact for the Harris-sheet profile, solved for in §.1.5.) One may formalize
this estimate somewhat (Loureiro et al. 2007, 2013) by quantifying what “varies faster
within |x| . a than it does at |x| � a” means, but not much is gained intuitively by
going that route, and the estimate (.23) will suffice.

As for the inner equation (.17), we know from (.21) that, whatever its solution,  
in

(⇠)

only depends on the parameter ⇤. Thus, equation (.18) may be written as

�

0
�

in

= f(⇤) (.24)

for some function f(⇤). Combining (.23) and (.24) yields an expression for the growth
rate, provided we can invert f(⇤). Fortunately, we can, at least in certain limits.

The first limit is the so-called “constant- approximation” or “FKR regime”, which
corresponds to f(⇤) ⇠ ⇤⌧ 1 (Furth et al. 1963). Then (.24) gives �0

�

in

⇠ ⇤, so that

�
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⇠ ⌧
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⇠
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(�

0
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1/5 (.25)

With �0 ⇠ 1/ka

2 (see (.23)), these become

�
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v

A,r

/a

⇠ (ka)
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a
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�
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a
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S
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a

, (.26)

where we have introduced the Lundquist number

S

a

.

=

av

A,r

⌘

. (.27)

Note that longer wavelengths have faster growth rates (the divergence as k ! 0 will be
cured in the “Coppi” regime, in which the small-�0 assumption breaks down – see below).
This approximation results from setting  

in

=  

in

(0) on the left-hand side of (.14), so
that the inner equation (.14) becomes
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(0)� ik�
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, (.28)

and so (cf. (.21))

⇠
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◆
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(�� �1) = �⇤ 
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(0). (.29)

In effect, we are assuming that the resistive diffusion time across the inner-layer thickness
is much shorter than the instability growth time, i.e., � ⌧ ⌘/�

2

in

, so that  
in

can be
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approximated as constant on the dynamical time scale. Using (.26) in this inequality
requires S

a

� (�

0
a)

4. This is sometimes called the “small-�0 regime”.
The second limit is the “Coppi regime” or “large-�0 regime”, in which the constant- 

approximation breaks down and � ⇠ ⌘/�

2

in

. This occurs for ⇤ ⇠ 1

�, at which f(⇤) ! 1.
The growth rate then becomes independent of �0 and we have
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⌧
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⌘

◆
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(.30)

In terms of the tearing-mode wavenumber k and the Lundquist number S

a

,

�
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v

A,r
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a

,
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a

. (.31)

In this limit, the shorter wavelengths have faster growth rates, opposite to the FKR
scaling (.26). This suggests a maximally growing mode, whose growth rate �

max

and
wavenumber k

max

may be estimated by matching the FKR solution (.26) to the Coppi
one (.31):

�
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⇠ �
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=) k
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a
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a
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�
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a
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�1/4

a

. (.32)

Note that the FKR (Coppi) regime corresponds to k > k

max

(k < k

max

).
Of course, all of these scalings make sense only if the modes can fit into the current

sheet, i.e., kL & 1, where L is the length of the current sheet. For the maximally growing
mode to be viable thus requires a current-sheet aspect ratio of L/a & S

1/4

a

. If this
inequality is not satisfied, then the fastest-growing mode will be the FKR mode (.26)
with the smallest possible allowed wavenumber, kL ⇠ 1. Thus, low-aspect-ratio sheets
with L/a ⌧ S

1/4

a

will develop tearing perturbations comprising just one or two islands;
the high-aspect-ratio sheets, in which the Coppi regime is accessible, will instead spawn
whole chains comprising ⇠k

max

L islands.

.1.5. Exact solution for a Harris sheet
This is optional material detailing a more rigorous derivation of the tearing-mode

dispersion relation.
The solutions obtained in the last section should suffice for this course. But with some

(read: a lot of) effort, one can be more precise. For that task, let us adopt the equilibrium
flux function  

0

= av

A,r

ln[cosh(x/a)], corresponding to the Harris-sheet profile (.2). Then
(.11) becomes
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⇣
x

a

⌘�
 

out

= 0 and �

out

= �i�⌧

A

coth

⇣
x

a

⌘
 

out

. (.33)

The former equation can be solved by changing variables to µ = tanh(x/a), so that
sech
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(x/a) = (1� µ

2
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=
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=
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.

Then (.33) becomes
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, (.34)
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the first of which you might recognize as the associated Legendre equation

d

dµ

(1� µ

2

)

d

dµ

+ `(`+ 1)� m

2

1� µ

2

�
P

m

`

(µ) = 0

with ` = 1 and m = ka. Transforming the boundary conditions  (±1) = 0 into  (µ =

±1) = 0 and enforcing  (µ) =  (�µ), the solution to (.34) is thus

 

out

= C

1m

P

m

1

(µ), (.35)

with C

1m

= const. If you can’t picture in your head what the first associated Legendre
polynomial with non-integer m looks like – I know I can’t – you may like to know that
the outer solution may be equivalently written as

 

out

(x) = C

0
1m

e

�kx


1 +

1
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tanh

⇣
x

a

⌘�
(.36)

for ⇠ > 0, where C

0
1m

= const. (Note that  
out

(�⇠) =  

out

(⇠).) Visually:

Recall that �0 measures the discontinuity of d 
out

/dx at x = 0 (see (.12)). Solving for
C

1m

(or C

0
1m

) requires matching onto the inner solution, but even before doing that we
can compute �0 using  

out

/ P

m

1

(µ) in (.12):2

�

0
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1

P

m

1

(0)

dP

m

1

dµ

����
+0

�0

=

2

P

m

1

(0)

dP

m

1

dµ

����
µ=0

= 2

✓
1

m

�m

◆

= 2

✓
1
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◆
. (.37)

Note that �0
> 0 requires ka < 1 – any unstable mode must have an extent at least as

large as the current-sheet thickness. This places an upper limit on the wavenumber of
the FKR modes (.26).

As for the inner equation, let us use its compact form (.21), repeated here for conve-
nience:

⇠

2

d

d⇠

✓
1

⇠
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◆
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⌘
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, (.38)

where ⇤ .

= �

3/2

⌧

A

⌧

1/2

⌘

. There are a few ways to solve (.38), none of which are particularly

2See https://dlmf.nist.gov/14.5 for information on Pm
` (0) and dPm

` /dµ|µ=0.

https://dlmf.nist.gov/14.5
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obvious. One way, explained in Appendix A of Ara et al. (1978), is as follows. Write

� = �1

1X
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, (.39)

where L

↵

n

(z) are the associated Laguerre (or “Sonine”) polynomials satisfying
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Substitute this decomposition into (.21) and use the recursion relations
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Multiply this by e

�⇠

2
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⇠

�1

L

�3/2

m

, integrate, and use the orthogonality relation
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+
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Thus, equation (.39) becomes3
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2
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4n� 1
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⇠

, (.42)

which may be solved for  
in

following (.22).
Actually doing so and plugging the solution into (.18) to compute �0 ain’t easy, as it

involves a lot of non-standard math. I may LaTeX those steps up one day, but, for now,
I’ll just skip to the answer:

�

0
�

in

= f(⇤)

.

=

⇡

2

� [(⇤+ 3)/4]

� [(⇤+ 5)/4]

⇤

1� ⇤

. (.43)

This is an implicit equation for � , which may be solved numerically (see figure below).
But it’s possible to recover our approximate results (.25) and (.30) in their respective

3Note that we cannot use the expansion (.39) if ⇤ = 1.
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limits. For ⇤⌧ 1,

f(⇤) ⇡ ⇡

2

� (3/4)

� (5/4)

⇤ ' 2.124⇤ =) � ⇡ 0.547 ⌧

�2/5

A

⌧

�3/5

⌘

(�

0
a)

4/5

. (.44)

Our approximate result for this FKR regime, equation (.25), is off by only a factor of
0.547 – not too bad. For ⇤ = 1

�,

f(⇤) ⇡ ⇡

2

� (1)

� (3/2)

1

1� ⇤

=

p
⇡

1� ⇤

=) � ⇡ ⌧

�2/3

A

⌧

�1/3

⌘

�O
✓
kv

A,r

�

0
a

◆
. (.45)

This matches our Coppi-regime estimate, (.30). These asymptotic solutions actually do
rather well across the full range of wavenumbers:

It also appears that we are well justified in estimating the maximally growing mode by
matching the FKR and Coppi expressions (as in (.32)). These regimes also occur where
we anticipated, with f(⇤) = �

0
�

in

being ⌧ 1 (� 1) in the FKR (Coppi) regime:

Thus the “small-�0” / “large-�0” phraseology.

.1.6. Nonlinear evolution and X-point collapse
How long does this linear phase, in which the tearing modes grow exponentially, last?

That depends on the �

0 of the mode. If the Coppi regime is accessible – i.e., if the
maximally growing wavenumber k

max

(see (.32)) that results in �

0
�

in

& 1 also satisfies
k

max

a < 1 – then X-point collapse is essentially instantaneous once the width w =

4

p� (0)/ 00
0

(0) of the exponentially growing island reaches �
in

. At this moment, w�0 is
also ⇠1, and so the deformations of the current sheet by the nonlinear islands have driven
the regions between the X-points to marginal stability. If the fastest-growing available
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modes are instead FKR-like, then there is a gap between when the nonlinear regime
begins (w ⇠ �

in

) and when it ends (w�0 ⇠ 1). In between occurs a period of secular
growth called the Rutherford (1973) stage, in which ẇ ⇠ ⌘�

0
(w), the argument of �0

indicating that the logarithmic derivative of  
out

is to be taken across the island (rather
than across the inner-layer width).4 During this slow growth stage, the initially unstable
current profile flattens and conditions are set up for the collapse of the inter-island X

points (Waelbroeck 1993; Loureiro et al. 2005). The figure below, adapted from Loureiro
et al. (2005), shows contours of  at the beginning of X-point collapse (left) and the
formation of an embedded, high-aspect ratio current sheet (right):

This current sheet is reminiscent of the now-famous Sweet–Parker configuration.

.2. Sweet–Parker reconnection

Peter Sweet (Sweet 1958) and Eugene Parker (Parker 1957) provided the first quan-
titative model of magnetic reconnection, envisioning it to be a steady-state process in
which a two-dimensional, incompressible flow advects magnetic flux into a current sheet
of length L and thickness �

SP

⌧ L. It is through the latter dimension that plasma,
accelerated in the direction along the current sheet by magnetic tension, is expelled in
the form of an outflow:

Steady state is achieved by (i) balancing the inflow velocity u

in

and the outflow velocity
u

out

using mass conservation, u
in

L ⇠ u

out

�

SP

; (ii) balancing the advective and resistive
electric fields so that all the inflowing magnetic flux is resistively destroyed, u

in

v

A,r

⇠
⌘j

z

⇠ ⌘v

A,r

/�

SP

; and (iii) stipulating that the outflows are Alfvénic, u
out

⇠ v

A,r

. (This

4Rutherford (1973) did not predict a saturation amplitude for the algebraically growing nonlinear
tearing mode. Subsequent papers by Militello & Porcelli (2004) and Escande & Ottaviani (2004)
(“POEM”) derived a modified equation for the Rutherford stage, ẇ ⇠ ⌘(�0 � ↵w/a2) with ↵
being a constant dependent upon the initial current-sheet geometry, thus predicting a saturated
amplitude w ⇠ �0a2.
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final ingredient follows from conservation of energy, with the magnetic energy flux into
the sheet balancing the kinetic energy flux out of the sheet.) The result is

u

in

v

A,r

⇠ �

SP

L

⇠
✓
v

A,r

L

⌘

◆�1/2

.

= S

�1/2

, (.46)

where S is the Lundquist number (using the current-sheet length L as the normalizing
lengthscale). In the solar corona, S ⇠ 10

12–1014; in the Earth’s magnetotail, S ⇠ 10

15–
10

16; and in a modern tokamak like JET, S ⇠ 10

6–108. You can see that S�1/2 is typically
a very small number, and so Sweet–Parker (SP) reconnection is slow – not as slow as
pure resistive diffusion, but slow in the sense that the reconnection rate ⌧�1

r

.

= u

in

/L ⇠
(v

A,r

/L)S

�1/2 tends towards zero as S ! 1. For example, the SP model predicts that a
reconnection-driven solar flare in a S ⇠ 10

14 part of the solar corona should last ⇠2 mths;
instead, flares are observed to last between 15 min and 1 hr. Not good.

This mismatch between theory and observation was immediately appreciated, and
spawned several attempts to formulate a model in which fast reconnection occurs. The
culprit is the smallness of the resistive layer: the fact that it must be thin enough to
make the current density large also means that the outflowing mass must pass through too
small of an opening. One particularly notorious attempt to circumvent this constraint was
proposed by Petschek (1964) (later revisited and amended by Kulsrud (2001)), in which
the current-sheet length L was shortened at the expense of introducing four standing
slow-mode shocks emanating from a central diffusion region:

The result is a logarithmic dependence of the reconnection rate on S, ⌧�1

r

⇠ (v

A,r

/L) lnS.
Unfortunately, no convincing evidence for this type of reconnection has been found (Park
et al. 1984; Biskamp 1986; Uzdensky & Kulsrud 2000; Malyshkin et al. 2005; Loureiro
et al. 2005), even when Petschek’s solution is used as an initial condition (Uzdensky &
Kulsrud 2000).5

It is worth emphasizing that the failure of the SP model to explain magnetic reconnec-
tion as it occurs in nature is not due to any shortcoming of the theory itself. There are no
obvious mistakes in the theory, which has been put on a rigorous footing (e.g., Uzdensky
& Kulsrud 2000). Indeed, both numerical simulations (e.g., see figure 4(b) of Loureiro
et al. 2005) and laboratory experiments (e.g., Ji et al. 1998) have measured reconnection
rates in excellent agreement with the SP scalings (.46). What, then, is the issue?

.3. Plasmoid instability

Let us suspend judgement for the meantime and suppose that the SP model is correct.
With tearing-mode theory in hand, let us ask the intriguing question of whether or not

5Petschek-like configurations do emerge when strongly localized (anomalous) resistivity profiles
are used (Malyshkin et al. 2005; Sato & Hayashi 1979; Ugai 1995; Scholer 1989; Erkaev et al.

2000, 2001; Biskamp & Schwarz 2001), as might occur under collisionless conditions.
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the steady-state SP current sheet is stable to tearing instabilities. One could of course
go the route of rigorously doing the linear tearing theory using the SP solution as the
background state, as Loureiro et al. (2007) did in a now-classic paper, but for our purposes
it will be sufficient to simply replace the current-sheet thickness a in the tearing-mode
theory of §.1 with �

SP

⇠ S

�1/2

L (Tajima & Shibata 1997; Bhattacharjee et al. 2009;
Loureiro et al. 2013). Focusing on the maximally growing tearing mode (.32),

k

max

L ⇠ L

a

S

�1/4

a

�! L

�

SP

✓
v

A,r

�

SP

⌘

◆�1/4

⇠ S

3/8

, (.47a)

�

max

v

A,r

/L

⇠ L

a

S

�1/2

a

�! L

�

SP

✓
v

A,r

�

SP

⌘

◆�1/2

⇠ S

1/4

, (.47b)

�

in

L

⇠ a

L

S

�1/4

a

�! �

SP

L

✓
v

A,r

�

SP

⌘

◆�1/4

⇠ S

�5/8

. (.47c)

This is the plasmoid instability – essentially, the tearing instability of a SP current
layer. Of course, the situation in question is very different than that obtained using
the stationary equilibrium Harris sheet, perhaps most obviously because the former has
background flows. These flows can be stabilizing in the tearing calculation, a possibility
we have ignored in making the estimates in (.47). This may be circumvented, however,
by demanding that � � v

A,r

/L, k
max

L � 1, and �

in

/�

SP

⌧ 1 – demands that may be
satisfied if S & 10

4. Indeed, it is at this critical Lundquist number that the plasmoid
instability is (now routinely) observed to occur in numerical simulations of reconnection
(e.g., Samtaney et al. 2009; Daughton et al. 2009; Bhattacharjee et al. 2009; Ni et al.
2010; Huang & Bhattacharjee 2010; Loureiro et al. 2012, 2013). The example below is
taken from a resistive-MHD numerical simulation by Samtaney et al. (2009), showing
the evolution of the current density (color) in the central x = [��

SP

, �

SP

] region of a SP
current sheet with S = 10

7:

Below is another example, taken from Bhattacharjee et al. (2009) using S = 2⇡ ⇥ 10

5:
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Since then, simulations of plasmoid-dominated reconnection has become an industry.
Given that large-aspect-ratio SP current sheets are violently unstable to the plasmoid

instability, it is worth asking whether we should expect them to exist in nature at all.
Indeed, Lundquist numbers of typical space and astrophysical plasmas are absurdly large,
with S ⇠ 10

13 or so in the solar corona implying a plasmoid-instability time scale less
than 0.06% of the dynamical time scale. Why would a nice SP current sheet ever be
realized under these conditions? See Pucci & Velli (2014) and Uzdensky & Loureiro
(2016) for more.6

6You may also wish to see Alt & Kunz (2019) for reasons why a relatively large-scale, smoothly
varying current layer (e.g., a Harris sheet) should not be expected to occur in a weakly collisional,
high-� plasma.



Kunz Lecture Notes for GPAP School 15

REFERENCES
Alt, A. & Kunz, M. W. 2019 Onset of magnetic reconnection in a collisionless, high-beta

plasma. J. Plasma Phys. 85 (1), 764850101.
Ara, G., Basu, B., Coppi, B., Laval, G., Rosenbluth, M. N. & Waddell, B. V. 1978

Magnetic reconnection and m = 1 oscillations in current carrying plasmas. Annals of

Physics 112, 443–476.
Bhattacharjee, A., Huang, Y.-M., Yang, H. & Rogers, B. 2009 Fast reconnection in

high-Lundquist-number plasmas due to the plasmoid Instability. Phys. Plasmas 16 (11),
112102.

Biskamp, D. 1986 Magnetic reconnection via current sheets. Physics of Fluids 29, 1520–1531.
Biskamp, D. & Schwarz, E. 2001 Localization, the clue to fast magnetic reconnection. Physics

of Plasmas 8, 4729–4731.
Daughton, W., Roytershteyn, V., Albright, B. J., Karimabadi, H., Yin, L. &

Bowers, K. J. 2009 Transition from collisional to kinetic regimes in large-scale
reconnection layers. Physical Review Letters 103 (6), 065004.

Erkaev, N. V., Semenov, V. S., Alexeev, I. V. & Biernat, H. K. 2001 Rate of steady-
state reconnection in an incompressible plasma. Physics of Plasmas 8, 4800–4809.

Erkaev, N. V., Semenov, V. S. & Jamitzky, F. 2000 Reconnection Rate for the
Inhomogeneous Resistivity Petschek Model. Physical Review Letters 84, 1455–1458.

Escande, D. F. & Ottaviani, M. 2004 Simple and rigorous solution for the nonlinear tearing
mode. Physics Letters A 323, 278–284.

Furth, H. P., Killeen, J. & Rosenbluth, M. N. 1963 Finite-Resistivity Instabilities of a
Sheet Pinch. Physics of Fluids 6, 459–484.

Harris, E. G. 1962 On a plasma sheath separating regions of oppositely directed magnetic
field. Il Nuovo Cimento 23, 115–121.

Huang, Y.-M. & Bhattacharjee, A. 2010 Scaling laws of resistive magnetohydrodynamic
reconnection in the high-Lundquist-number, plasmoid-unstable regime. Physics of

Plasmas 17 (6), 062104–062104.
Ji, H., Yamada, M., Hsu, S. & Kulsrud, R. 1998 Experimental Test of the Sweet-Parker

Model of Magnetic Reconnection. Physical Review Letters 80, 3256–3259.
Kulsrud, R. M. 2001 Magnetic reconnection: Sweet-Parker versus Petschek. Earth, Planets,

and Space 53, 417–422.
Loureiro, N. F., Cowley, S. C., Dorland, W. D., Haines, M. G. & Schekochihin,

A. A. 2005 X-Point Collapse and Saturation in the Nonlinear Tearing Mode Reconnection.
Phys. Rev. Lett. 95 (23), 235003.

Loureiro, N. F., Samtaney, R., Schekochihin, A. A. & Uzdensky, D. A. 2012 Magnetic
reconnection and stochastic plasmoid chains in high-Lundquist-number plasmas. Physics

of Plasmas 19 (4), 042303–042303.
Loureiro, N. F., Schekochihin, A. A. & Cowley, S. C. 2007 Instability of current sheets

and formation of plasmoid chains. Phys. Plasmas 14 (10), 100703–100703.
Loureiro, N. F., Schekochihin, A. A. & Uzdensky, D. A. 2013 Plasmoid and Kelvin-

Helmholtz instabilities in Sweet-Parker current sheets. Phys. Rev. E 87 (1), 013102.
Loureiro, N. F. & Uzdensky, D. A. 2016 Magnetic reconnection: from the Sweet-Parker

model to stochastic plasmoid chains. Plasma Phys. Controlled Fusion 58 (1), 014021.
Malyshkin, L. M., Linde, T. & Kulsrud, R. M. 2005 Magnetic reconnection with anomalous

resistivity in two-and-a-half dimensions. I. Quasistationary case. Physics of Plasmas

12 (10), 102902–102902.
Militello, F. & Porcelli, F. 2004 Simple analysis of the nonlinear saturation of the tearing

mode. Physics of Plasmas 11, L13–L16.
Ni, L., Germaschewski, K., Huang, Y.-M., Sullivan, B. P., Yang, H. &

Bhattacharjee, A. 2010 Linear plasmoid instability of thin current sheets with shear
flow. Physics of Plasmas 17 (5), 052109.

Park, W., Monticello, D. A. & White, R. B. 1984 Reconnection rates of magnetic fields
including the effects of viscosity. Physics of Fluids 27, 137–149.

Parker, E. N. 1957 Sweet’s Mechanism for Merging Magnetic Fields in Conducting Fluids.
J. Geophys. Res. 62, 509–520.

Petschek, H. E. 1964 Magnetic Field Annihilation. NASA Special Publication 50, 425.



16 M. W. Kunz

Pucci, F. & Velli, M. 2014 Reconnection of Quasi-singular Current Sheets: The “Ideal”
Tearing Mode. Astrophys. J. Lett. 780, L19.

Rutherford, P. H. 1973 Nonlinear growth of the tearing mode. Phys. Fluids 16, 1903–1908.
Samtaney, R., Loureiro, N. F., Uzdensky, D. A., Schekochihin, A. A. & Cowley,

S. C. 2009 Formation of Plasmoid Chains in Magnetic Reconnection. Physical Review

Letters 103 (10), 105004.
Sato, T. & Hayashi, T. 1979 Externally driven magnetic reconnection and a powerful magnetic

energy converter. Physics of Fluids 22, 1189–1202.
Scholer, M. 1989 Undriven magnetic reconnection in an isolated current sheet.

J. Geophys. Res. 94, 8805–8812.
Sweet, P. A. 1958 The Neutral Point Theory of Solar Flares. In Electromagnetic Phenomena

in Cosmical Physics (ed. B. Lehnert), IAU Symposium, vol. 6, p. 123.
Tajima, T. & Shibata, K., ed. 1997 Plasma astrophysics.
Ugai, M. 1995 Computer studies on powerful magnetic energy conversion by the spontaneous

fast reconnection mechanism. Physics of Plasmas 2, 388–397.
Uzdensky, D. A. & Kulsrud, R. M. 2000 Two-dimensional numerical simulation of the

resistive reconnection layer. Physics of Plasmas 7, 4018–4030.
Uzdensky, D. A. & Loureiro, N. F. 2016 Magnetic Reconnection Onset via Disruption of

a Forming Current Sheet by the Tearing Instability. Phys. Rev. Lett. 116 (10), 105003.
Waelbroeck, F. L. 1993 Onset of the sawtooth crash. Phys. Rev. Lett. 70, 3259–3262.
Yamada, M., Kulsrud, R. & Ji, H. 2010 Magnetic reconnection. Rev. Mod. Phys. 82, 603–

664.
Zweibel, E. G. & Yamada, M. 2009 Magnetic Reconnection in Astrophysical and Laboratory

Plasmas. Ann. Rev. Astron. Astrophys. 47, 291–332.


	.1. Tearing instability
	.1.1. Formulation of the problem
	.1.2. Outer equation
	.1.3. Inner equation
	.1.4. Approximate solutions
	.1.5. Exact solution for a Harris sheet
	.1.6. Nonlinear evolution and X-point collapse

	.2. Sweet–Parker reconnection
	.3. Plasmoid instability

