Creating Astrophysical Conditions in the Laboratory

Carolyn C. Kuranz Research Professor, University of Michigan Director, Center for Laser Experimental Astrophysical Research and Center for Laboratory Astrophysics

Talk Outline

- Definition of high-energy-density physics and high-energy-density laboratory astrophysics
- Mini tutorial on scaling an experiment to an astrophysical systems
- Examples of laboratory astrophysics experiments

High-energy-density (HED) physics is the study of systems with pressures > 1 Mbar

1 Mbar = 0.1 Tpascal = 10^{12} dynes/cm² = 10^{6} atm

RP Drake, High-Energy-Density Physics: Foundations of Inertial Fusion and Experimental astrophysics

There is significant overlap with HED and astrophysics

RP Drake, High-Energy-Density Physics: Foundations of Inertial Fusion and Experimental astrophysics

HED Laboratory Astrophysics is a young, but growing field

- HEDLA started in 1996 focused on hydrodynamics
 - Now includes planetary interiors, equation of state, atomic processes, radiation transport, photoionization, stellar opacity, magnetic reconnection, particle acceleration, collisionless plasmas, turbulent dynamos, nuclear astrophysics, pair plasmas...

How do I scale an astrophysical system to a laboratory experiment?*

- 1. Can both systems validly be described by the same equations?
- 2. Can the two systems have good Ryutov scaling?
- 3. Can the two systems have good scaling with regard to the dynamics of the process of interest?

*Adapted from High-Energy-Density Physics: Foundations of Inertial Fusion and Experimental astrophysics See also Ryutov et al. ApJ., 518, 821 (1999)

Scaled laboratory experiments must be motivated by a specific astrophysical process

Can hydrodynamic instabilities explain the light curve of SN1987A?

Observations of ⁵⁶Co and ⁵⁶Ni were sooner than predicted and hydrodynamic mixing may explain the discrepancy

1. Can both systems validly be described by the same equations?

Hydrodynamic fluids described by single-fluid Euler Equations

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$

$$\rho \left(\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} \right) = -\nabla P$$

$$\frac{\partial P}{\partial t} - \gamma \frac{p}{\rho} \frac{\partial \rho}{\partial t} + \mathbf{v} \cdot \nabla P - \gamma \frac{P}{\rho} \mathbf{v} \cdot \nabla \rho = 0$$

Additional terms for radiative or magnetized systems can also be included

If the equations remain invariant under the following transformation,

$$r_{\text{astro}} = ar_{\text{expt}}$$
 $P_{\text{astro}} = cP_{\text{expt}}$
 $\rho_{\text{astro}} = b\rho_{\text{expt}}$ $t_{\text{astro}} = a\sqrt{\frac{b}{c}}t_{\text{expt}}$

then there is direct correspondence between the two systems

For the specific example, this implies characteristic time and length scales

	SN1987A	Laboratory experiment
r	10 ¹¹ cm	10² µm
ρ	10 ⁻² g/cc	1 g/cc
р	10 Mbar	1 Mbar
t	1000 s	10 ns

2. Can the two systems have good Ryutov scaling?

Spatial relations for velocity, pressure, and density must be the scaled

$$\mathbf{v}_{t=t_o} = \mathbf{v}' \mathbf{F}(r / h)$$

Where F(r/h), H(r/h), and G(r/h) are dimensionless functions

 $\rho_{t=t_o} = \rho' H(r / h)$

 $P_{t=t_o} = P'G(r / h)$

This implies
$$Ry = v' \sqrt{\frac{\rho'}{P'}}$$

1D Spatial profiles for SN1987A and laboratory experiment

3. Can the two systems have good scaling with regard to the dynamics of the process of interest?

This is determined by the dimensionless numbers key to the specific astrophysical system

For SN1987A this includes:

- System must be highly collisional, $\lambda_c \ll r$
- Viscosity negligible, Re >> 1
- Heat conduction negligible, Pe >> 1
- Radiation flux negligible, Pey >> 1

How on Earth do we create scaled astrophysical laboratory experiments?

- High-energy LASERS
 - Omega Laser Facility, U. of Rochester
 - National Ignition Facility, Lawrence Livermore Nat Lab
 - ORION Laser Facility, UK
 - LMJ and LULI, France
 - SGII, China
- Pulsed Power machines
 - Z machine, Sandia National Lab
 - COBRA, Cornell University
 - MAIZE, University of Michigan
 - Magpie, Imperial College

Experiments are performed at Omega laser facility

- Ten Omega Laser beams to drive shock
 - ~400 J each, ~4 kJ total energy
 - $-\lambda$ = .35 μ m, UV light
 - 1 ns square pulse
- Produce intensity of about 10¹⁵ W/cm²
- Pressure of ~40 Mbars or 40 million atmospheres

Inside the Omega target chamber

The Omega Laser System

We create a RT unstable interface under HED conditions

Key components of target for Rayleigh-Taylor experiment

150 µm plastic (1.41 g/cc)

- Tracer strip material: C₅₀₀H₄₅₇Br₄₃ (1.42 g/cc)
- Entire surface machined with seed perturbation

We use x-ray radiography to image the instability of the evolution

HED RT experiments have been performed on many laser facilities over the past 2 decades

2009

Early 2000

The study of energy transport effects on the Rayleigh-Taylor instability is relevant to SN1993J a core-collapse, red supergiant

The density profiles of the shocked ejecta and CSM are self-similar

$$\rho_{ej} = \rho_o (r_o / r)^n (t / t_o)^{(n-3)}$$

$$\rho_{CSM} = \rho_o (r_o / r)^s$$

 $r_o, t_o,
ho_o$ are the reference radius, time and density

n ~ 30 and s = 1.7 fit the observationally-determined characteristics of SN 1993J

Chevalier et al, *Astrophysical Journal*, 1992 Suzuki et al., *Astrophysical Journal*, 1995 Fransson et al., *Astrophysical Journal*, 1996

Relative density and temperature profiles of SN1993J

Hydrodynamic profiles

Astrophysical and experimental parameters

Scale Parameter	SN1993J	NIF experiment
Intershock distance L (cm)	$2.8 imes 10^{14} t_{ m yr}^{0.95}$	0.02
Shock separation speed $U \ (\text{cm}^{-1})$	$3.0 imes 10^8 t_{ m yr}^{-0.046}$	$6.8 imes10^6$
Ejecta density at RS (g $\rm cm^{-3}$)	$3.4 \times 10^{-19} t_{\rm yr}^{-1.6}$	0.026
SEL Density (g $\rm cm^{-3}$)	$1.4 \times 10^{-16} t_{\rm yr}^{-1.6}$	0.5
SCSM Density (g cm^{-3})	$9 imes 10^{-19} t_{ m yr}^{-1.6}$	0.18
SEL Temperature (eV)	$3800 t_{yr}^{-0.092}$	20
SCSM Temperature (eV)	$7.8 imes 10^5 t_{ m yr}^{-0.092}$	80
RS Velocity (km s^{-1})	$1.7 imes 10^4 t_{ m yr}^{-0.046}$	35
FS Velocity (km s^{-1})	$2 imes 10^4 t_{ m yr}^{-0.046}$	170
Z	1	2
A	1	20

Key dimensionless parameters

Dimensionless Parameter	SN1993J at 0.1 yrs	NIF experiment
$\lambda_{ m c}/L$	10^{-4}	10^{-8}
Reynolds number Re	$4 \times 10^5 t_{ m yr}^{-0.48}$	10^{7}
Energy flux ratio R	10^{3}	2
Peclet number Pe	1	4
Ryutov number Ry	4	5

Both systems are highly collisional with negligible viscosity and energy fluxes due to radiation and heat conduction are higher or comparable to the mechanical energy flux and the hydrodynamics of the systems are similar

We use to NIF drive a create a high- and lowenergy flux in an RT unstable system

PI: Hye-Sook Park, Channing Huntington, Carolyn Kuranz

We performed these experiments at the National Ignition Facility

The "set" for a 23rdCenturyMovie!!Laser bayTarget bay

But not powered by Fusion!!!!

Typical data show qualitative and quantitative differences between cases

We must compare the RT growth of each case

A(t) is the Atwood number, g(t) is the acceleration and k is the wave number of the initial perturbation

Experimental data and CRASH simulations are in good agreement

CRASH simulations also show a reduction in RT growth

Key dimensionless parameters

Dimensionless Parameter	SN1993J at 0.1 yrs	NIF experiment
$\lambda_{ m c}/L$	10^{-4}	10^{-8}
Reynolds number Re	$4\times 10^5 t_{\rm yr}^{-0.48}$	10^{7}
Energy flux ratio R	10^{3}	2
Peclet number Pe	1	4
Ryutov number Ry	4	5

Both systems are highly collisional with negligible viscosity and energy fluxes due to radiation and heat conduction are higher or comparable to the mechanical energy flux and the hydrodynamics of the systems are similar

Heating is possible by radiation and electron heat conduction

$$F_{rad} = n_e n_i \Lambda D$$

Energy flux due to cooling by radiative losses from the shocked layer

$$Q_e = 0.1 n_e m_e v_{e,cs}^3$$

Electron heat flux, 10% the free-streaming heat flux

$$F_{mech} = \rho_{ej} v_{rs}^3$$

n_e electron density

n_i ion density

 $\boldsymbol{\Lambda}$ cooling function

D shocked layer thickness

Mechanical energy flux driving the shockheating of the shocked matter

- m_e electron mass
- $v_{e,cs}$ electron thermal velocity
- $\rho_{ej}~$ ejecta density
- v_{rs} reverse shock velocity

Radiative and heat conduction fluxes are large in SN1993J

Scale Parameter	SN1993J	NIF experiment
$F_{mech} \ ({\rm ergs/cm^2/s})$	$1.8 \times 10^5 t_{tyr}^{-1.76}$	2.8×10^{19}
$F_{rad} \ ({\rm ergs/cm^2/s})$	$3.6 \times 10^7 t_{tyr}^{-2.26}$	4.2×10^{19}
$Q_e \ ({\rm ergs/cm^2/s})$	$2.0 \times 10^8 t_{tyr}^{-1.76}$	$1.7 imes 10^{19}$

$$R = \frac{Q_{ecs} + F_{rad}}{F_{mech}}$$

Energy flux ratio R	10^{3}	2	

ARTICLE

DOI: 10.1038/s41467-018-03548-7

OPEN

How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants

C.C. Kuranz¹, H.-S. Park², C.M. Huntington², A.R. Miles², B.A. Remington², T. Plewa³, M.R. Trantham¹, H.F. Robey², D. Shvarts^{4,5}, A. Shimony^{4,5}, K. Raman², S. MacLaren², W.C. Wan ^{1,6}, F.W. Doss⁶, J. Kline⁶, K.A. Flippo⁶, G. Malamud^{1,5}, T.A. Handy¹, S. Prisbrey², C.M. Krauland⁷, S.R. Klein¹, E.C. Harding⁸, R. Wallace², M. J. Grosskopf⁹, D.C. Marion¹, D. Kalantar², E. Giraldez⁷ & R.P. Drake¹

Summary

- We performed RT experiments in high- and low-flux regimes on NIF
- We found that high energy fluxes reduce the RT growth
- Energy fluxes due to radiative losses and electron heat conduction are large in SN1993J and the NIF experiment
- These fluxes should be considered in astrophysical modeling
- See CC Kuranz etal Nature Communications (2018) and CM Huntington et al Physics of Plasmas (2018)

ARTICLE

DOI: 10.1038/s41467-018-02953-2

OPEN

Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma

P. Tzeferacos^{1,2}, A. Rigby ¹, A. F. A. Bott¹, A.R. Bell¹, R. Bingham^{3,4}, A. Casner⁵, F. Cattaneo², E.M. Churazov^{6,7}, J. Emig⁸, F. Fiuza⁹, C.B. Forest¹⁰, J. Foster¹¹, C. Graziani², J. Katz¹², M. Koenig¹³, C.-K. Li¹⁴, J. Meinecke¹, R. Petrasso¹⁴, H.-S. Park⁸, B.A. Remington⁸, J.S. Ross⁸, D. Ryu ¹⁵, D. Ryutov⁸, T.G. White¹, B. Reville ¹⁶, F. Miniati¹⁷, A.A. Schekochihin¹, D.Q. Lamb², D.H. Froula¹² & G. Gregori ¹,²

LETTER

doi:10.1038/nature14048

A higher-than-predicted measurement of iron opacity at solar interior temperatures

J. E. Bailey¹, T. Nagayama¹, G. P. Loisel¹, G. A. Rochau¹, C. Blancard², J. Colgan³, Ph. Cosse², G. Faussurier², C. J. Fontes³, F. Gilleron², I. Golovkin⁴, S. B. Hansen¹, C. A. Iglesias⁵, D. P. Kilcrease³, J. J. MacFarlane⁴, R. C. Mancini⁶, S. N. Nahar⁷, C. Orban⁷, J.-C. Pain², A. K. Pradhan⁷, M. Sherrill³ & B. G. Wilson⁵

nature physics

PUBLISHED ONLINE: 19 JANUARY 2015 | DOI: 10.1038/NPHYS3178

Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows

C. M. Huntington¹*, F. Fiuza¹, J. S. Ross¹, A. B. Zylstra², R. P. Drake³, D. H. Froula⁴, G. Gregori⁵, N. L. Kugland⁶, C. C. Kuranz³, M. C. Levy¹, C. K. Li², J. Meinecke⁵, T. Morita⁷, R. Petrasso², C. Plechaty¹, B. A. Remington¹, D. D. Ryutov¹, Y. Sakawa⁷, A. Spitkovsky⁸, H. Takabe⁷ and H.-S. Park¹

Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field B. Albertazzi *et al.*

B. Albertazzi *et al. Science* **346**, 325 (2014); DOI: 10.1126/science.1259694

0 1E-10 2E-10 3E-10 4E-10 5E-10

Additional HEDLA Work

"Two-dimensional blast-wave-driven Rayleigh Taylor instability: Experiment and Simulation," Kuranz et al. *Astrophysical Journal*, 2009

"Laboratory evidence of dynamo amplification of magnetic fields in a turbulent plasma," P. Tzeferacos et al. *Nature Communications* 2018

"A higher-than-predicted measurement of iron opacity at solar interior temperatures," J. Bailey et al. *Nature Letters*, 2015

"How high energy fluxes may affect Rayleigh-Taylor instability growth in young supernova remnants," Kuranz et al. *Nature Communications*, 2018

"Observation of magnetic field generation via the Weibel instability in interpenetrating plasma flows," Huntington et al., *Nature Physics*, 2015

"Laboratory formation of a scaled protostellar jet by coaligned poloidal magnetic field," *Science*, 2014

Conclusions

- Laboratory experiments can garner knowledge information about specific processes in astrophysical systems
- HED Laboratory Astrophysics covers a vast array of physical processes
- There are a lot possibilities for HED experiments and collaborations

We use to NIF drive a create a high- and lowenergy flux in an RT unstable system

PI: Hye-Sook Park, Channing Huntington, Carolyn Kuranz, Aaron Miles, Forrest Doss, Kumar Raman

Typical data show qualitative and quantitative differences between cases

We must compare the RT growth of each case

A(t) is the Atwood number, g(t) is the acceleration and k is the wave number of the initial perturbation

Experimental data and CRASH simulations are in good agreement

Experimental data and CRASH simulations are in good agreement

CRASH simulations also show a reduction in RT growth

CRASH simulations also show a reduction in RT growth

Comparison of simulated nominal and reduced opacities

Astrophysical and experimental parameters

Scale Parameter	SN1993J	NIF experiment
Intershock distance L (cm)	$2.8 imes 10^{14} t_{yr}^{0.95}$	0.02
Shock separation speed $U~({\rm cm/s})$	$3.0 imes 10^8 t_{yr}^{-0.046}$	$6.8 imes 10^6$
Ejecta density at RS (g $\rm cm^{-3}$)	$3.4 \times 10^{-19} t_{yr}^{-1.6}$	0.026
SEL Density (g $\rm cm^{-3}$)	$1.4 \times 10^{-16} t_{yr}^{-1.6}$	0.5
SCSM Density (g $\rm cm^{-3}$)	$9 \times 10^{-19} t_{yr}^{-1.6}$	0.18
SEL Temperature (eV)	$3800t_{yr}^{-0.092}$	20
SCSM Temperature (eV)	$7.8 \times 10^5 t_{yr}^{-0.092}$	80
RS Velocity (km s^{-1})	$1.7 \times 10^4 t_{tyr}^{-0.046}$	35
FS Velocity (km s^{-1})	$2 \times 10^4 t_{tyr}^{-0.046}$	170
Z	1	2
A	1	20

Key dimensionless parameters

Dimensionless number	SN1993J	NIF experiment
λ_c/L	$\sim 10^{-4}$	$\sim 10^{-8}$
Re	$\sim 10^{6}$	$\sim 10^7$
Energy flux ratio R	$\sim 10^3$	~ 2

Both systems are highly collisional with negligible viscosity and energy fluxes due to radiation and heat conduction are higher or comparable to the mechanical energy flux

Heating is possible by radiation and electron heat conduction

$$F_{rad} = n_e n_i \Lambda D$$

Energy flux due to cooling by radiative losses from the shocked layer

$$Q_e = 0.1 n_e m_e v_{e,cs}^3$$

Electron heat flux, 10% the free-streaming heat flux

$$F_{mech} = \rho_{ej} v_{rs}^3$$

n_e electron density

n_i ion density

 $\boldsymbol{\Lambda}$ cooling function

D shocked layer thickness

Mechanical energy flux driving the shockheating of the shocked matter

- m_e electron mass
- $v_{e,cs}$ electron thermal velocity
- $\rho_{ej}~$ ejecta density
- v_{rs} reverse shock velocity

Radiative and heat conduction fluxes are large in SN1993J

Scale Parameter	SN1993J	NIF experiment
$F_{mech} \ ({\rm ergs/cm^2/s})$	$1.8 \times 10^5 t_{tyr}^{-1.76}$	2.8×10^{19}
$F_{rad} \ ({\rm ergs/cm^2/s})$	$3.6 \times 10^7 t_{tyr}^{-2.26}$	4.2×10^{19}
$Q_e \ ({\rm ergs/cm^2/s})$	$2.0 \times 10^8 t_{tyr}^{-1.76}$	$1.7 imes 10^{19}$

$$R = \frac{Q_{ecs} + F_{rad}}{F_{mech}}$$

Energy flux ratio R	10^{3}	2	