Laboratory Astrophysics on the SSX device

Michael Brown

Swarthmore College

with contributions from

M. Kaur, D. Schaffner, T. Gray, C. Cothran (postdocs) J. Shrock '18, E. Lewis '18, L. Barbano '18 K. Gelber '20, H. Srinivasulu '21, M. Membratu '21, L. Dyke '20... 60 total

GPAP Plasma Astrophysics Summer School (APS/NSF) June 18-20, 2019

Research supported by DOE APRA and NSF

SSX background (undergraduate research program)

- 25 years, 60 students (many now at R1 places)
 - Magnetic reconnection, MHD turbulence
- Single user "table top" laboratory experiment
- Some aspects relevant to solar/space physics

Solar plume (CME) and wind (plasma)

400 km/s plasma with entrained magnetic fields (SDO, 8/12)

The SSX Laboratory

Cylindrical vacuum chamber (D = 0.5 m, L = 1 m)

High voltage plasma guns on each end

SSX parameters

Ion Density (protons)	10^{14} - 10^{15} cm ⁻³
Temperature (T _e ,T _i)	20 - 60 eV
Magnetic Field	>0.1 Tesla
Ion gyroradius	< 0.5 cm
Alfvén speed	100 km/s
S (Lundquist number)	> 1000
Plasma β	0.1-1

 $\rho << R$, so treat as MHD fluid... no intrinsic scale!

Equipartition of flow, thermal, and magnetic energy

Spheromak formation

Stuffing flux acts like a nozzle

Plasma merging scenario (old SSX)

Rapid merging of two rings

Single structure is formed

MHD wind tunnel (since 2014)

- 50 km/s flows, fully ionized and magnetized
- Kinetic, magnetic, thermal energies comparable
 - Single plume (10 kJ)
 - Characterization of MHD turbulence
 - MHD simulation

Taylor state formation

Taylor state formation

Taylor state formation

Translation

Compression

Diagnostics for compression

Compression

SSX MHD wind tunnel 50 km/s, magnetic and fluid turbulence

Diagnose with arrays of magnetic and velocity probes

Diagnostics at midplane (B and n_e)

Line-averaged density with He-Ne, temperature from IDS

Ion Doppler spectrometer on SSX

Interferometer chord and two magnetic probes also shown

Mach probe measures local flow

Comparison with predicted helical state

State with the minimum magnetic energy (subject to certain constraints) Originally predicted by J. B. Taylor

Trapped proton orbits

A. D. Light, H. Srinivasulu, et al (in preparation)

Diagnostics at midplane (B and n_e)

Line-averaged density with He-Ne, temperature from IDS

PDF of temporal increments

$$\Delta \mathbf{b}(t, \Delta t) = \mathbf{b}(t + \Delta t) - \mathbf{b}(t)$$

$$S^{2}(\Delta t) = \langle (\mathbf{b}(t + \Delta t) - \mathbf{b}(t))^{2} \rangle$$
$$S^{2}(\Delta r) = \langle (\mathbf{b}(r + \Delta r) - \mathbf{b}(r))^{2} \rangle$$

From A to D (small Δt to large Δt) \rightarrow More Gaussian, Less Intermittent

Comparison to Solar Wind

Greco, 2009

Permutation Entropy

Permutation Entropy

$$S[P] = -\sum_{j=1}^{N} p_j ln(p_j)$$

Case 2: linear ramp so only one permutation appears... S = 0... minimum

Complexity-Entropy map (SSX, solar wind, deterministic chaos)

PRE, Weck, et al (2014)

Summary

Turbulent relaxation shows the emergence of a twisted helical magnetic structure in SSX that is a good trap for protons

Similar to magnetic structures observed in solar/space plasmas

Thank you! Questions?