
GPAP Summer 2019 Problem Set

1. A mechanical Alfvén wave. Suppose we have a perfectly conducting rectangular loop
of height h and part of its width x immersed in a uniform magnetic field B = Bẑ oriented
out of the page. The loop has a mass m and inductance L. Ignore gravity.

(a) Give the loop an initial velocity v = v0x̂ to the right, so that the flux through the loop
increases in time. What happens? Describe the motion in words.

According to Lenz’s law, the increased magnetic flux threading the loop will generate
a clockwise current flowing around the loop. Associated with this current is an electric
field E = vB, and thus a voltage vBh. Energy will be transferred back and forth
between the kinetic energy of the wire, mv2, and the energy of the inductor, LI2/2.
The wire will thus oscillate.

(b) Solve for the motion analytically.

Kirchoff’s law gives v(t)Bh − Lİ(t) = 0. Energy conservation gives mv2
0 = mv2(t) +

LI2(t). Combining these, we have
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√
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Alternatively, the force on the wire is IhB, and so

m
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= IhB =⇒ m

d2v
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L
v =⇒ d2v

dt2
=
B2h2

mL
v,

which also gives a harmonic oscillator of frequency Bh/
√
Lm.

(c) Now suppose that the loop has some resistance R. How big should R be before resis-
tance plays an appreciable role in the motion?

Resistance will play a role in the motion once

v(t)Bh ∼ Lİ(t) ∼ IR =⇒ R ∼ Bh

√
L

m
.



2. Energy conservation in MHD. In Prof. Kunz’s lecture notes on hydrodynamics, an
equation was derived for the evolution of the total energy density (see (II.20)):
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where e = P/(γ−1), Φ is the gravitational potential, and the other symbols have their usual
meanings. Following Prof. Brown’s lecture on ideal MHD, which presented the ideal-MHD
induction equation,

∂B

∂t
= −c∇×E =∇×(u×B), (2)

generalize the conservation law (1) to account for the evolution of the magnetic energy
density, B2/8π. In particular, demonstrate (a) that the magnetic energy is transported by
the Poynting flux S

.
= cE×B/4π, and (b) that
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Dot the induction equation with B/4π:
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Now we need the additional magnetic terms in the kinetic energy equation. To obtain those,
dot the Lorentz force with u:

u ·
(
−∇B

2

8π
+

B ·∇B

4π

)
.

But this is just minus the right-hand side of our magnetic energy equation. So, adding the
total hydrodynamic energy equation including these Lorentz-force terms to the magnetic
energy equation leads to
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.



3. Transport of energy by a circularly polarized Alfvén wave. A circularly polarized
Alfvén wave of amplitude δB⊥ propagates along an otherwise uniform magnetic field B0ẑ:

B = B0ẑ + δB⊥ e⊥(t, z) and u = − δB⊥√
4πρ

e⊥(t, z), (4)

where
e⊥(t, z) = cos[k(vAt− z)]x̂ + sin[k(vAt− z)]ŷ. (5)

(a) Draw the magnetic-field line at t = 0. Which way is the wave propagating? Is the wave
right-handed or left-handed?

The wave is propagating in the z direction, and it is right-handed.

(b) Prove that the magnetic-field strength B is a constant, despite the presence of the wave.

B2 = B2
0 + 2B0 δB⊥(ẑ · e⊥) + δB2

⊥ (e⊥ · e⊥) = B2
0 + δB2

⊥.

(c) Show that (4) is an exact nonlinear solution of the ideal-MHD equations.

We already know that Alfvén waves are linear solutions to the ideal-MHD equations.
So we need only examine the nonlinear terms, all of which either involve ∇B2 = 0 or
e⊥ ·∇e⊥ = 0.

(d) Calculate the time-averaged Poynting flux 〈S〉t
.
= 〈cE×B/4π〉t for this wave. Write it

in terms of the total wave energy E = ρu2/2+δB2
⊥/8π. Interpret your result physically.
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Energy is transported along the mean magnetic field at the Alfvén speed.



4. Energy conservation in MHD turbulence. In this problem, you will derive a con-
servation law for an incompressible (i.e., ∇·u = 0) turbulent fluid.

(a) The MHD induction equation including a constant magnetic resistivity η is

DB

Dt
= (B ·∇)u +

c2η

4π
∇2B, (6)

where D/Dt
.
= ∂/∂t + u ·∇ is the Lagrangian derivative. Dot this equation with B

and integrate over real space to derive an evolution equation for the magnetic energy∫
d3r |B|2/8π. Assume zero flux at the boundaries (taken to be at infinity). (You may

use the answer from Problem #2 and then add on the appropriate resistive contribu-
tion.)

From the solution to Problem #2, in ideal MHD the magnetic energy satisfies
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where we have used ∇·u = 0 to obtain the last equality. Integrating this equation
over all space and assuming zero flux at the boundaries yields

d
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.

We add to this the resistive losses:∫
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∫
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i.e., Joule heating (“I2R” in the language of high-school electronics).

(b) The MHD momentum equation including a constant dynamical viscosity µ is

ρ
Du

Dt
= −∇

(
P +

B2

8π

)
+

(B ·∇)B

4π
+ µ∇2u. (7)

Dot this equation with u and integrate over real space to derive an evolution equation
for the kinetic energy

∫
d3r ρ|u|2/2. Again, assume zero flux at the boundaries (taken

to be at infinity). At some point you’ll need the mass continuity equation for an
incompressible fluid,

∂ρ

∂t
= −u ·∇ρ.

(Note: this is done in Prof. Kunz’s hydrodynamics lecture notes for an inviscid fluid,
so you need only figure out the appropriate viscous contribution.)

Minding the note, we need only compute the viscous losses:∫
d3r u ·µ∇2u = −

∫
d3r µ|∇u|2 = −

∫
d3r µ|ω|2,

where ω =∇×u is the flow vorticity. Then

d
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∫
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2
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∫
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−
∫

d3r µ|ω|2.



(c) Add the results of parts (a) and (b) together to obtain the following conservation law
for the total mechanical (magnetic + kinetic) energy

d

dt

∫
d3r

(
|B|2

8π
+
ρ|u|2

2

)
= −

∫
d3r
(
η|j|2 + µ|ω|2

)
≤ 0, (8)

where j = (c/4π)∇×B is the current density and ω = ∇×u is the flow vorticity.
Suppose there were a source term injecting mechanical energy into the system at large
scales. Explain physically how a steady state (d/dt = 0) might be achieved. (Hint:
what if η and µ were really, really small – would it matter?)

Combining the results from parts (a) and (b), the uB :∇B terms cancel and we obtain
(8). To obtain steady state with a source term, the energy would have to be dissipated.
If η and µ were really small, this would require small-scale structure to be generated in
the magnetic field and/or velocity field. This is just what a turbulent cascade does.



5. Kelvin’s circulation theorem is an extremely important result in fluid dynamics.
Every time you ride an airplane, you owe your life to it. In this problem you will prove it,
as well as investigate the effects of baroclinicity and the Lorentz force.

(a) Start by taking the curl of the MHD force equation

Du

Dt
= −1

ρ
∇P +

j×B
cρ

,

where j = (c/4π)∇×B is the current density, to obtain an evolution equation for
the vorticity ω

.
= ∇×u. Use a particular vector identity to write it in the form

∂ω/∂t = ∇×( . . . ). This should look almost like the ideal-MHD induction equation,
but not quite. (The resolution of this “not quite” involves freezing the magnetic field in
the electron fluid and retaining a non-ideal term in the induction equation that allows
the magnetic field to drift through the ion species – the so-called “Hall effect”.)

Note: The vorticity is divergence free, which means that vortex lines cannot end within
the fluid – they must either close on themselves (like a smoke ring) or intersect a
boundary (like a tornado). Any fresh vortex lines that are made must be created as
continuous curves that grow out of points or lines were the vorticity vanishes.

The curl of the ideal-MHD momentum equation is
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ρ
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j×B
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)
=⇒ ∂ω

∂t
+∇×

[
(u ·∇)u

]
︸ ︷︷ ︸
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ρ
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)

(b) The circulation is defined by

Γ
.
=

∮
∂S

u · d`, (9)

where d` is an infinitesimal line element along a simple closed contour ∂S(t) bounding
a material surface S(t) moving with velocity u. By Stokes’ theorem, this is equivalent
to

Γ =

∫
S
ω · dS,

which states that the circulation around the boundary ∂S can be calculated as the
number of vortex lines that thread the enclosed area S. Take D/Dt of (9) and use
the result of part (a) to obtain an equation for the evolution of the circulation. (Hint:
don’t forget to compute the time rate of change of the area, something that was done
in the MHD lecture when proving Alfvén’s theorem.)

Note: “simple closed contour” means simply connected – that is, the region must be
such that we can shrink the contour to a point without leaving the region. A region
with a hole (like a bathtub drain) is not simply connected.



The circulation Γ evolves according to
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which gives the same thing.

(c) Answer all of the following questions. Under what conditions is the circulation con-
served? Why would pressure gradients and density gradients have anything to do with
generating circulation? Draw a picture as part of your explanation. (Hint: It might
help to imagine what would happen in an atmosphere if the pressure gradient were be-
ing imposed by vertical gravity and the density of air were greater in the east than the
west.) Why would the Lorentz force have anything to do with generating circulation?
(Hint: Take an irrotational fluid and thread it with a twisted magnetic field. Let it
go. What would happen?) Would it help or hurt vorticity conservation if the magnetic
field weren’t perfectly frozen into the plasma? Why?

The circulation is conserved if and only if P = P (ρ) and∮
∂S

(
j×B
cρ

)
· d` = 0.

The former constraint, which may be written ∇P×∇ρ = 0 – “zero baroclinicity” or
“barotropic” – may be understood visually:



The force is greater on the fluid element with larger density (think gravity ρg = −∇P
pulling down), and so there is a torque about the center of mass (c.o.m.). This causes
rotation, thus vorticity.

The Lorentz force gives rotation because magnetic-field lines resist twisting. Imagine
threading a fluid with twisted field lines (i.e., a current). Those lines would unwind
and, by flux freezing, would carry the fluid with them, spinning it. If the magnetic field
weren’t frozen into the plasma, then the field could unwind without pulling the fluid
with it, and no vorticity would be generated.

(d) Knowing that the Coriolis force is −2Ω×u, prove that the circulation in a rotating
reference frame is given by Γ +

∫
S 2Ω · dS, where Ω is the angular velocity.

Define the velocity as measured in a rotating frame, urot = u + Ω×r. Then the
associated vorticity in the rotating frame is

ωrot = ω +∇×(Ω×r) = ω + Ω(∇· r)− (Ω ·∇)r = ω + 3Ω−Ω = ω + 2Ω.

The associated circulation is
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∫
S
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∫
S

(
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)
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=

∮
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∫
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2Ω · dS
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∫
S

2Ω · dS.

Alternatively, you could look at the Coriolis force in the momentum equation and
compute its line integral about the surface of a fluid element:∮
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Dt
· d` = · · · −

∮
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(2Ω×u) · d`

= · · · −
∮
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= · · · − D

Dt

∫
S
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6. Magnetorotational Instability with springs. The acknowledgement at the end of
Balbus & Hawley (1992a) reads, “It is fitting and proper to acknowledge Alar Toomre for this
important insight that the Hill equations had something to contribute to the MHD stability
problem.” This insight is what led Balbus and Hawley to develop the now-famous spring
model of the MRI, which was then used to conjecture that the Oort A-value is the universal
growth rate limit for accretion-disk shear instabilities. The Hill equations describe local disk
dynamics in a rotating frame – local in that they describe small excursions x

.
= R−R0 and

y
.
= R0(ϕ− Ω0t) from a circular orbit R = R0, ϕ = Ω0t. They are given by:

ẍ− 2Ω0ẏ = −4A0Ω0x+ fx, (10a)

ÿ + 2Ω0ẋ = fy, (10b)

where the overdot indicates a time derivative and fx and fy represent local forces in the x
and y directions. The Oort A-value A0 = −(3/4)Ω0 for Keplerian rotation.1

The MRI analogy goes as follows. Consider the local force to be nondissipative and to act
by restoring a displacement back to its equilibrium position. The leading-order contribution
to fx and fy in a Taylor expansion about (R0,Ω0t) is linear; for an isotropic force, we have
fx = −Kx and fy = −Ky, where K > 0 is some constant. (You could also profitably think
of this force as being due to an ideal spring with spring constant K.) Then (10) becomes

ẍ− 2Ω0ẏ = −4A0Ω0x−Kx, (11a)

ÿ + 2Ω0ẋ = −Ky. (11b)

Visually,

Now then. . .

(a) For small displacements x, y, show that the solutions are ∝ exp(±iωt) with

ω4 − ω2
(
κ2 + 2K

)
+K

(
K + 4A0Ω0

)
= 0, (12)

where κ2 .
= 4Ω2

0(1 + A0/Ω0) is the square of the epicyclic frequency, which is positive
for Keplerian rotation. Equation (12) should look familiar from the lecture notes on

1The notation for differential rotation varies in the accretion-disk literature; here’s a dictionary: 2A0 = −qΩ0 =
dΩ/d lnR|R=R0 . Often, the “0” subscript is simply dropped for ease of notation.



MHD instabilities: set K = 0 and you get trivial displacements (ω2 = 0) and epicycles
(ω2 = κ2); replace K with (k ·vA)2 and you get the axisymmetric MRI linear dispersion
relation. Show that A0 < 0 is a necessary (but not sufficient) condition for instability.

Equations (11) admit solutions ∝ exp(−iωt), resulting in the following system:[
−ω2 +K + 4A0Ω0 2Ω0iω

−2Ω0iω −ω2 +K

] [
x
y

]
= 0.

Taking the determinant of the 2× 2 matrix and setting it to zero yields the dispersion
relation

ω4 − ω2
(
2K + κ2

)
+K

(
K + 4A0Ω0

)
= 0,

where κ2 .
= 4Ω2

0(1 + A0/Ω0) is the square of the epicyclic frequency. Write γ = −iω,
which is a growth rate. The solution to this bi-quadratic that might grow is

γ2 = −
(

2K + κ2

2

)
+

[(
2K + κ2

2

)2

−K
(
K + 4A0Ω0

)]1/2

.

In order for the term in the square root to overwhelm the first (negative) term and lead
to growth, we require

K + 4A0Ω0 < 0.

A necessary condition for instability is thus A0 < 0, an outwardly decreasing angular
velocity.

(b) S. A. Balbus and J. F. Hawley, Astrophys. J. 392, 662 (1992) conjecture “that the Oort
A-value is an upper bound to the growth rate of any instability feeding upon the free
energy of differential rotation.” En route, they show that the maximum growth rate
of the MRI is the Oort-A value, that it occurs at Kmax/Ω

2
0 = −(A0/Ω0)(2 + A0/Ω0),

and that the corresponding eigenvector satisfies y/x = −1, i.e., radial and azimuthal
displacements are equal in size. Prove these three facts.

Differentiate the dispersion relation with respect to K and set ∂ω2/∂K = 0:

−2ω2 + 2K + 4A0Ω = 0 =⇒ K = ω2 − 2A0Ω0.

Substitute this back into the dispersion relation to obtain the maximum growth rate
γ2

max = −ω2
max = A2

0. Inserting this value into K = ω2 − 2A0Ω0 gives the desired
Kmax/Ω

2
0 = −(A0/Ω0)(2 + A0/Ω0). Returning to the system of equations, we see that

y/x = 2Ω0iω/(K − ω2). Inserting these maximum values gives (y/x)max = −1.

(c) Use these to show that, at maximum growth, the Lagrangian change in the rotation
frequency of a displaced fluid element is ∆Ω = ẏ/R0 = −|A0|x/R0 and that the corre-
sponding Lagrangian change in its specific angular momentum ` = ΩR2 satisfies

∆`

`0

= 2
x

R0

+
∆Ω

Ω0

= 2

(
1− |A0|

2Ω0

)
x

R0

. (13)

Then show that outwardly (inwardly) displaced fluid elements always have more (less)
angular momentum that the orbits they are passing through (which is what makes



instability possible). (Hint: what is the difference in ` between two undisturbed orbits
a radial distance x apart, in a disk in which dΩ/d lnR = 2A0 < 0?)

∆Ω

Ω0

=
ẏ

Ω0R0

→ − iωmax

Ω0

(y
x

)
max

x

R0

= −|A0|
Ω0

x

R0

∆`

`0

=
∆Ω

Ω0

+ 2
x

R0

→
(

2− |A0|
Ω0

)
x

R0

.

Note that the difference between the angular momentum of an orbit at R0 +x and one
at R0 is

∆`

`0

=

(
1 +

x

R0

)2(1+A0/Ω0)

− 1 ≈
(

2− 2
|A0|
Ω0

)
x

R0

,

assuming A0 < 0. Thus, outwardly displaced fluid elements always have more angular
momentum than the orbit they are passing through.

(d) Bonus. Set fx = −Kxx and fy = −Kyy with Kx 6= Ky being positive constants. Com-
pute the new dispersion relation governing the time-evolution of small displacements.
Is the growth rate larger or smaller than the Oort-A value for Kx > Ky? for Kx < Ky?
From this result, find the maximum growth rate γmax and the (hint: asymptotic) values
of Kx and Ky at which γmax is achieved. (It may help to make a quick contour plot
of the growth rate in the Kx–Ky plane using your dispersion relation.) E. Quataert,
W. Dorland, and G. W. Hammett Astrophys. J. 577, 524 (2002) used this as a model
for the magnetorotational instability in a collisionless plasma.

The Hill equations with an anisotropic spring are

ẍ− 2Ω0ẏ = −4A0Ω0x−Kxx,

ÿ + 2Ω0ẋ = −Kyy,

with Kx 6= Ky being positive constants. Adopting solutions x, y ∼ exp(−iωt), we have[
−ω2 +Kx + 4A0Ω0 2Ω0iω

−2Ω0iω −ω2 +Ky

] [
x
y

]
= 0.

Taking the determinant of the 2× 2 matrix and setting it to zero yields the dispersion
relation

ω4 − ω2
(
Kx +Ky + κ2

)
+Ky

(
Kx + 4A0Ω0

)
= 0,

where κ2 .
= 4Ω2

0(1 + A0/Ω0) is the square of the epicyclic frequency. Write γ = −iω,
which is a growth rate. Solving the bi-quadratic leads to

γ2 = −
(
Kx +Ky + κ2

2

)
+

[(
Kx +Ky + κ2

2

)2

−Ky

(
Kx + 4A0Ω0

)]1/2

.

Because the final term in brackets must be negative for the possibility of growth, having
Ky > Kx increases the growth rate (assuming A0 < 0). In fact, the maximum growth
rate occurs at Ky � Ω2

0 � Kx:

γ2
max ≈ −

Ky

2
+
Ky

2

(
1− 16A0Ω0

Ky

)1/2

≈ −4A0Ω0 =⇒ γmax =
√
|4A0Ω0|.



This is larger than the maximum MRI growth rate in MHD! Below is a plot of growth
rate in the Kx–Ky plane for a Keplerian disk; note that the maximum is achieved as
Kx → 0, Ky →∞:
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It’s not part of the solution, but note that the eigenvector here has

y

x
=

2Ω0iω

−ω2 +Ky

= − 2Ω0γ

γ2 +Ky

. (14)

With γ ≈ γmax, this is |y/x| ∼ Ω2
0/Ky � 1, i.e., a predominantly radial displacement.

Following §2.4 of Balbus & Hawley (1992a), the maximum local radial separation rate
of nearby undisturbed orbital elements undergoing differential rotation is the Oort-A
value. But this is measured along the longitude l = π/4 (i.e., y/x = −1) for any shear
flow, not |y/x| � 1. The issue is that the radial and azimuthal couplings are different,
and it is ultimately the azimuthal restoring force that removes angular momentum from
an inwardly displaced fluid elements and transfers it to a tethered outwardly displaced
fluid element. The radial force is stabilizing, since it is trying to pin the element to its
unperturbed location.



7. Drifts in Dipoles. The equation for a dipole magnetic field in spherical coordinates is
given by

B =
3r(m · r)

r5
− m

r3
=
m

r3

(
2 cosϑ r̂ + sinϑ ϑ̂

)
, (15)

where m = mẑ is the magnetic moment.

(a) Show that the equation for a magnetic-field line is r = R sin2 ϑ, where R is the radius
of the magnetic-field line at the equator (ϑ = π/2).

Magnetic-field-line equations are

dr

Br

=
rdϑ

Bϑ

=
r sinϑdϕ

Bϕ

=
ds

B
,

where s is the distance along the field line. Thus, for the dipole field,

dr

2 cosϑ
=

rdϑ

sinϑ
=⇒

∫ r(ϑ)

R

dr

r
= 2

∫ ϑ

π/2

d(sinϑ)

sinϑ
=⇒ r(θ) = R sin2 ϑ.

(b) Show that the curvature of the magnetic-field line at the equator (ϑ = π/2) is Rc = R/3.

b̂
.
=

B

B
=

2 cosϑ r̂ + sinϑ ϑ̂√
3 cos2 ϑ+ 1

=⇒ b̂(π/2) = ϑ̂,
∂br
∂ϑ

∣∣∣∣
π/2

= −2,
∂bϑ
∂ϑ

∣∣∣∣
π/2

= 0

b̂ ·∇b̂ =
r̂

r

∂br
∂ϑ

+
ϑ̂

r

∂bϕ
∂ϑ
−
b2
ϕ

r
r̂ +

brbϑ
r

ϑ̂ =⇒ b̂ ·∇b̂ = −3r̂

R
at ϑ =

π

2
.

(c) Compute the curvature drift of a particle with charge q and parallel kinetic energy W‖
at a radial distance R at the equator.

The curvature drift is

vc = −
v2
‖

Ω
(b̂ ·∇b̂)×b̂ = 6W‖

cR2

qm
ϕ̂ at ϑ =

π

2
.

(d) Compute the grad-B drift of a particle with charge q and perpendicular kinetic energy
W⊥ at a radial distance R at the equator. For what ratio W⊥/W‖ are the drifts the
same?

The grad-B drift is

v∇B =
v2
⊥

2Ω
b̂×∇ lnB = 3W⊥

cR2

qm
ϕ̂ at ϑ =

π

2
.

Drifts are the same for W⊥/W‖ = 2.



Now suppose there are two aligned magnetic dipoles with moment m spatially separated by
2a about the origin. The magnetic field is then given by

B(r) =

[
3r+(m · r+)

r5
+

− m

r3
+

]
+

[
3r−(m · r−)

r5
−

− m

r3
−

]
, (16)

where r±
.
= r ± a. This field may be obtained by taking the curl of the vector potential

A(r) =
m×r+

r3
+

+
m×r−
r3
−

. (17)

Because ∂A/∂t = 0, we have E = 0. Some magnetic-field lines in the z = 0 plane, obtained
from the isocontours of Ay, are shown below, with those in red revealing a magnetic bottle:

(e) Place a particle in the center of the mirror and launch it with velocity v. Discuss with
your group how the particle moves for various initial pitch angles, vx(0)/v(0).

Shown below are particle trajectories in the x-y and y-z planes from a numerical in-
tegration at different pitch angles θ0

.
= cos−1[vx(0)/v(0)] in a double-dipole mirror

with m = 500x̂ and a = 10x̂. The red-orange-yellow-green-blue-violet color sequence
corresponds to time running from t = 0 to tf = 60π:



A number of effects are evident: (i) particles with larger v‖/v (i.e., smaller θ0) pen-
etrate farther into the magnetic potential before turning around – a consequence of
conservation of energy and µ; (ii) particles are curvature and grad-B drifting,

vcurv + v∇B =
v2

Ω

(
1 + cos2 θ

)
b̂×∇ lnB,

in the −ϕ̂ direction; and (iii) smaller θ0 have larger gyro-radii and thus larger drifts.

(f) Suppose the distance between the two dipoles in part (e) is adiabatically shrunk in half:

a→ a(t) = 10x̂− 2.5
{

1 + tanh[γ(t− tf/2)]
}
x̂,



with γ � 1, as shown in the figure below:

The vector potential defined by equation (17) then depends upon time, A(r)→ A(t, r),
and so there is a non-zero electric field, E(t, r) = −∂A/∂t. Discuss with your group
how the particle will move if v(0) = (x̂ + ŷ)/

√
2 (i.e., an initial pitch angle of 45◦). In

particular, what will v‖ = v · b̂ look like versus time?

Adopting m = 500x̂, the trajectory of a θ0 = 45◦ particle in the x-y and y-z planes,
as well as x and v‖ versus time, are shown below from a numerical integration:



Note that, as a shrinks, the turning points contract and, by conservation of J , the
extrema of v‖ increase in magnitude. An approximate check on J conservation can
be had by measuring the factor by which the x-distance between the turning points is
reduced (6.8589/2.9556 = 2.3206) and comparing it to the factor by which |v‖| increases
(1.6465/0.7071 = 2.3285). Not too bad! A more accurate calculation would involve the
path integral of v‖ along the guiding-center orbit evaluated between the turning points.



8. Critical balance. In a rigidly rotating, hydrodynamic, incompressible fluid, the char-
acteristic linear frequency of waves is ω = ±(k‖/k)Ω, where Ω = Ωẑ is the angular velocity
of the flow and k‖ = kz is component the wavenumber oriented parallel to the rotation axis.
Suppose that such a fluid is turbulent, with velocity fluctuations satisfying k‖/k⊥ � 1, i.e.,
the fluctuations are anisotropic with respect to the rotation axis and elongated in that di-
rection. Assume the turbulence to be strong and critically balanced. Obtain the resulting
perpendicular and parallel power spectra of the turbulent velocities and the scaling relation
linking k‖ and k⊥. Does the anisotropy of the fluctuations increase or decrease as the cascade
goes to smaller scales? Is the similar to or different than Goldreich–Sridhar turbulence?

Following standard Kolmogorov arguments for the perpendicular cascade,

ε ∼ δu2
λ

τλ
∼ δu3

λ

λ
=⇒ E(k⊥) ∼ ε2/3k

−5/3
⊥ ,

where λ denotes the perpendicular scale. To obtain the scalings along the rotation axis, we
first note that the linear frequency ω = (k‖/k)Ω ≈ (k‖/k⊥)Ω if the turbulence is strongly
anisotropic. Denoting the parallel scale by `, the critical balance is

Ω
λ

`
∼ δuλ

λ
∼ ε1/3λ−2/3 =⇒ ` ∼ Ω ε−1/3λ5/3.

In terms of wavenumbers, k‖ ∼ Ω−1ε1/3k
5/3
⊥ . Note that k‖/k⊥ ∝ k

2/3
⊥ , and so the anisotropy

decreases as the cascade goes to smaller scales. At k‖ ∼ k⊥ ∼ kiso ∼ Ω3/2ε−1/2, the cascade
becomes isotropic and the presence of rotation no longer matters. This is different from G–S
turbulence, in which the fluctuations become more anisotropic with respect to the magnetic

field as they cascade. The parallel spectrum is E(k‖) = E(k⊥)(dk⊥/dk‖) ∝ k
−7/5
‖ .



9. Landau damping via Newton’s 2nd. Imagine an electron moving along the z axis with
constant speed v0. Slowly turn on a wave-like electric field: E(t, z) = E0 cos(ωt − kz) eεtẑ,
where ω is the frequency and k is the wavenumber of the wave; the adverb “slowly” is
captured by the eεt factor with ε � 1. (You’ll take ε → +0 at the end of the calculation.)
The goal is to solve this problem perturbatively by assuming E0 is so small that it changes
the electron’s trajectory only a little bit over several wave periods.

(a) The lowest-order solution is vz(t) = v0, z(t) = v0t, and E(t, v0t) = E0 cos[(ω−kv0)t] eεt.
Calculate the first-order corrections, δvz(t), δz(t), and δE(t, z).

The equations of motion are

dz

dt
= vz and

dvz
dt

= − e

me

E0 cos(ωt− kz) eεt.

The lowest-order solution is simple: z(t) = v0t and vz(t) = v0 = const. Write vz(t) =
v0 + δvz(t) and z(t) = v0t+ δz(t). Then,

dδvz
dt

= − e

me

E(t, z(t)) ≈ − e

me

E(t, v0t) = − e

me

E0<
{

e[i(ω−kv0)+ε]t
}

δvz(t) = −eE0

me

∫ t

0

dt′<
{

e[i(ω−kv0)+ε]t′
}

= −eE0

me

<
{

e[i(ω−kv0)+ε]t − 1

i(ω − kv0) + ε

}
= −eE0

me

εeεt cos[(ω − kv0)t]− ε+ (ω − kv0)eεt sin[(ω − kv0)t]

(ω − kv0)2 + ε2

δz(t) =

∫ t

0

dt′ δvz(t
′)

= −eE0

me

∫ t

0

dt′<
{

e[i(ω−kv0)+ε]t − 1

i(ω − kv0) + ε

}
= −eE0

me

[
<
{

e[i(ω−kv0)+ε]t − 1

[i(ω − kv0) + ε]2

}
− εt

(ω − kv0)2 + ε2

]
= −eE0

me

{
[ε2 − (ω − kv0)2][eεt cos[(ω − kv0)t]− 1] + 2ε(ω − kv0)eεt sin[(ω − kv0)t]

[(ω − kv0)2 + ε]2

− εt

(ω − kv0)2 + ε2

}
.

δE(t, z) = E(t, z)− E(t, v0t) = δz(t)
∂E

∂z
(t, v0t) = δz(t)k sin[(ω − kv0)t]E0eεt.

(b) The average power gained by the electron (and thus lost by the wave) is

P (v0) = −e〈E(t, z(t))vz(t)〉 ≈ −e〈[E(t, v0t) + δE(t, z)][v0 + δvz(t)]〉,



where the brackets indicate an average over timescales satisfying ω−1 � t� ε−1. Use
this to show that, to leading order,

P (v0) =
e2E2

0

2me

e2εt dχ

dv0

, where χ(v0)
.
=

εv0

(ω − kv0)2 + ε2
. (18)

Plot χ(v0) and identify when P (v0) > 0 and P (v0) < 0. Explain what each case means
physically.

P (v0) = −e〈E(t, z(t))vz(t)〉
≈ −e〈[E(t, v0t) + δE(t, z)][v0 + δvz(t)]〉

= −e
〈

v0E(t, v0t)︸ ︷︷ ︸
= 0 after averaging

+ δvz(t)E(t, v0t)︸ ︷︷ ︸
only cos term
in δvz survives

+ δE(t, z)v0︸ ︷︷ ︸
only sin term
in δz survives

〉
+O(δ2)

= −eE0 eεt
〈
−eE0

me

εeεt

(ω − kv0)2 + ε2
cos2[(ω − kv0)t]

− eE0

me

2εkv0(ω − kv0)eεt

[(ω − kv0)2 + ε2]2
sin2[(ω − kv0)t]

〉
=
e2E2

0

2me

e2εt

[
ε

(ω − kv0)2 + ε2
+

2εkv0(ω − kv0)

[(ω − kv0)2 + ε2]2

]
=
e2E2

0

2me

e2εt d

dv0

[
εv0

(ω − kv0)2 + ε2

]
︸ ︷︷ ︸

.
= χ(v0)

Plot of χ(v0) and explanation:



(c) This must be a very lonely electron, so let’s give him some friends. Suppose there is
now a whole distribution of these electrons, F (v0). Show that the total power per unit
volume going into (or out of) this distribution is (take ε→ +0)

P = − e2E2
0

2mek2
πωF ′

(
ω

k

)
. (19)

Explain this formula in the context of Landau damping. You’ll need Plemelj’s formula:

lim
ε→+0

1

x− ζ ∓ iε
= PV

1

x− ζ
± iπδ(x− ζ),

where PV denotes the principal value and δ(x) is the Dirac delta function.

P =

∫
dvz F (vz)P (vz) =

e2E2
0

2me

e2εt

∫
dvz F (vz)

dχ

dvz

= −e
2E2

0

2me

e2εt

∫
dvz F

′(vz)χ(vz).

Take ε→ 0+:

χ(vz) =
εvz

(ω − kvz)2 + ε2

= − ivz
2

(
1

kvz − ω − iε
− 1

kvz − ω + iε

)
→ πω

k2
δ(vz − ω/k)

=⇒ P = −e
2E2

0

2me

πω

k2
F ′
(
ω

k

)
.

Damping if ωF ′(ω/k) < 0. Instability if ωF ′(ω/k) > 0. Makes sense!


