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The astrophysical “engines”

C Crab Nebula )
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Dissipation Sites: Shocks or Reconnection?




The astrophysical “engines”

‘Shocks ‘ ‘ Magnetic Reconnection ‘

The Fermi process reconnecting field
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The astrophysical “exhausts™

Light and particles from astronomical

high-energy sources

relativistic jets

€

galaxy clusters S
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Some astrophysical “exhausts”

Average gal, t--+---
HiRes-MIA r—w—i
Kascade

Astro high-energy sources can:

* accelerate electrons and protons, including
UHECRSs (Ultra High Energy Cosmic Rays).

= J(E) (m'2 s s Gev'™

* produce non-thermal photon spectra.

(Ghisellini+ 17)



From exhausts to engines

We have no direct probe of the nature of the fuel and of the
mechanics of the engine, but we can only observe the exhausts.
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Studying the engine: the PIC method

I -1N- . Move particles under
Particle-in-Cell (PIC) method: © parices U
It is the most fundamental way of PRstiget
capturing the interplay of charged
. i Interpolate EM fields on Deposit current from
part|C|eS and e.m. fields. the grid to the particles in particle motion in the

the cells . —— particles cells onto the grid
T3 in the cells

Spatial Domain

Solve for EM fields on the
grid

The computational challenge:

The microscopic scales resolved by PIC simulations are much smaller than astronomical scales.

Typical length (c/wp) and time (1/wyp) scales are:

—1/2 1 —1/2
L 255x10° () em —~18x107° () s
Wp lem™ Wp lem™

We need large-scale simulations, state-of-the-art codes and massive computing resources.



Mystery #1. neutron star mergers
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Open guestions

* How to make magnetic fields from scratch?

* How to accelerate particles to very high energies?



Relativistic shoel
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Weakly magnetized shocks

Mediated by the Weibel instability, that generates small-scale sub-equipartition magnetic fields.

2D PIC simulation of o=0 y¢=15 e—-e*shock
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Low-@ sihocks are filamentary

Mediated by the Weibel instability, that generates

small-scale sub-equipartition magnetic fields.
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The Fermi process in low-o shocks

Particle acceleration via the Fermi process in self-generated turbulence,
for initially unmagnetized (i.e., 0=0) or weakly magnetized flows.
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GRB shocks arc@ellewahe non-thermal particles
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Conclusions are the same in 2D and 3D, for electron-positron and electron-ion plasmas




Mystery #1 solved '?

* How to make magnetic fields from scratch?

via the Welbel instability.

But what is the long-term evolution of the post-shock field?
* How to accelerate particles to very high energies?

via the Fermi process at shocks.



Mystery #2: blazars

Blazars: jets from Active Galactic Nuclei pointing along our line of sight

relativistic jet =

e broadband spectrum, from radio to
v-rays (and even TeV energies)

Log vL, [erg s71]

e l[ow-energy synchrotron +
high-energy inverse Compton (IC)
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(Ghisellini+ 17)




Powerful, hard and fast emission

(A) extended power-law spectra of the

emitting particles, often with hard slope T
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Powerful, hard and fast emission

(A) extended power-law spectra of the

emitting particles, often with hard slope
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(B) fast time variability

credit: Interstellar



Open questions

* How to accelerate particles in jets?

* How to produce ultra-fast time variability?



The mechanism: magnetic reconnection?

reconnecting field

reconnectmg field

MMS Crab Nebula

Relativistic Reconnection o > ] VA ~ C

High-energy astro sources are our best “laboratories” of relativistic reconnection




D =10 reconnection in electron-positron plasma
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300

(LS & Spitkovsky 14)

The reconnection layer breaks into a chain of magnetic islands / plasmoids




(A) Extended non-thermal spectra
2D electron-positron
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e power-law spectra of the emitting v Reconnection produces power laws of
particles, often with hard slope accelerated particles, with hard slopes
(p=2) for high magnetizations (0=z10).
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Thohbgbnstomlwparm

e In 2D, particles are trapped in plasmoids
and they gain energy slowly, y o«t1/2




The highest energy particles

e |[n 2D, particles are trapped in plasmoids e R N
and they gain energy slowly, y «t2 e TN —— T

(Zhang, LS, Giannios, in prep)

e In 3D, a few lucky particles escape from plasmoids.

» After escaping, they wiggle around the layer and
accelerate linearly in time, y oct.

 In powerful AGNs, ions can be accelerated
up to UHECR energies.



(B) Fast and powerful flares

Magnetic reconnection in jets can power
the observed high-energy emission.
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Fast time variability
The Doppler effect

https.//www.youtube.com/watch?v=h40nBYrbCjY

Plasmoids moving toward the observer lead (via Doppler effect)
to high frequencies, so short timescales


https://www.youtube.com/watch?v=h4OnBYrbCjY

Mystery #2 solved '?

* How to accelerate particles in jets?

via magnetic reconnection.

* How to produce ultra-fast time variability?

with fast reconnection plasmoids moving toward the observer.


https://www.youtube.com/watch?v=h4OnBYrbCjY

Mystery #3: FRBs

‘ | ' Lorimer et al.
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Magnetars as FRB progenitors.

Circumstantial evidence:

e Fast (~ms) duration requires a
compact source.

e Magnetic energy of a you'ng magnetar
is sufficient to power FRBs.

recently confirmed by the discovery of
an FRB from a Galactic magnetar!




Open questions

* \What causes the FRB emission?



FRBs from magnetars

e Energy may be released by a “magnetar quake”, launching Alfven waves

e Alfven waves become nonlinear, driving magnetic reconnection and shocks

v 107 em

(Yuan+ 20)



Relativistic shocks from magnetar flares
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e magnetar e-e*wind, or
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The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate
coherently in the shock field.
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The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate
coherently in the shock field.

(2) Shocked particles form an unstable
“ring” distribution in momentum space.

The population inversion is constantly
replenished.

(Hoshino & Arons 91)
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The synchrotron maser

The synchrotron maser:

(1) Electrons and positrons gyrate
coherently in the shock field.

(2) Shocked particles form an unstable

ring” distribution in momentum space. 5=03 : yo=10 ; e-&*

The population inversion is constantly
replenished.

(3) Collapse of the unstable ring results in
the emission of e.m. “precursor” waves.

— FRBs [?] from first principles!

100 150 200

(Plotnikov & LS 19)
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Shock-powered coherent emission
0=0.6; yo=10 ; e—-e*

(Nattila, LS+ 21, in prep)

— Synchrotron maser emission is robust in 1D, 2D, 3D



PIC simulations allow to assess from first principles:

(1) Efficiency

(2) Spectrum

(3) Beaming

(4) Polarization



Mystery #3 solved?







