
were exactly preserved, such particles would not be produced
because the magnetic field B does not reach the required val-
ues anywhere. Therefore, the increase in the perpendicular
spectrum must arise from scattering either because of non-
adiabatic behavior in the narrow boundary layers that develop
as a result of reconnection or because of the development of
an instability directly driven by the anisotropy.

The distribution of the electron magnetic moment l ¼
mv2
? =2B for both simulations is shown in Fig. 13. It is clear

that l is very well conserved in simulation B, especially at
low energies l < 1 where the electrons remain adiabatic in
the presence of the strong guide field Bz ¼ B0. For simula-
tion A with Bz ¼ 0:2B0, there is a drop of about 20% at the
lowest energies, indicating that there is scattering into higher
l. This further suggests that the greater perpendicular heat-
ing in simulation A is due to non-adiabatic behavior in the
small guide field regime.

VI. DISCUSSION AND CONCLUSIONS

We have presented a guiding center model to explore
the heating of electrons during reconnection with modest and

large guide fields. We find that for a small guide field of
0:2B0 (with B0 the asymptotic reconnecting field) electron
heating is dominated by the Fermi reflection of electrons
downstream of X-lines where the tension of newly recon-
nected field lines drives the reconnection outflow. The elec-
tron energy gain is given by the curvature drift of electrons
in the direction of the reconnection electric field. In this
small guide field case, heating from the parallel electric field
and that associated with betatron acceleration (which is
actually an energy sink) are negligible. In the case of a stron-
ger guide field (1:0B0), the heating associated with parallel
electric fields and the Fermi mechanism are comparable. The
greater importance of the parallel electric field is because of
the elongated current layers that form during reconnection
with a guide field, which is where most parallel heating by
this mechanism takes place. The net electron heating from
electron holes, which densely populate the separatrices and
island cores, is small because positive and negative contribu-
tions cancel. For both weak and strong guide fields, island
mergers lead to bursts of electron acceleration.

An important scaling question concerns the role of heat-
ing by the parallel electric field in very large systems. The
acceleration by parallel electric fields is largely confined to
the narrow current layers around the X-line. In contrast, the
heating through Fermi reflection occurs in a broad region in
the exhaust downstream of X-lines and well into the ends of
magnetic islands. At early times, the sheer number of
X-lines could well make parallel electric fields a significant
source of heating and acceleration. However, at late time
when islands may be system-size, fewer x-lines might remain
so parallel electric fields might not produce significant accel-
eration. In addition, the regions in which the EkJk term domi-
nates have characteristic widths that scale with de / m1=2

e
with me the electron mass. In the simulations presented here,
mp =me ¼ 25. For a real mass ratio of mp =me " 1836, the
corresponding regions with Ek 6¼ 0 are expected to be much
smaller. In contrast, the curvature drift dominates electron
heating on island scales, which are not expected to depend
on the choice of mass ratio once islands grow to finite size.

Evidently, further simulations are required to explore
how the heating mechanisms given in Eq. (5) scale with sys-
tem size. One of the motivations of exploring electron acceler-
ation in the guiding center model is to develop a generic
approach for addressing acceleration mechanisms in 3D sys-
tems where simple explanations of particle acceleration in
contracting islands are no longer adequate: magnetic islands
will generally no longer exist because field lines in 3D sys-
tems are chaotic and therefore volume-filling. However, since
the conversion of energy by the relaxation of magnetic tension
is fundamental to the reconnection process, we expect that the
Fermi-like acceleration mechanism will remain important in a
3D system and its role can be quantified by evaluating the
heating mechanisms presented in Eq. (5).

Finally, we comment briefly about the implications of
the strong anisotropy of the energetic electrons seen in the
spectra in Fig. 12 for the simulation with a guide field of 1.0
B0. Gamma-ray flares have recently been detected in the
Crab Nebula with photon energies exceeding "200 MeV.
These photons exceed the upper cutoff ("160 MeV) that is

FIG. 12. Parallel and perpendicular electron momentum spectra (over the
entire domain) for a simulation with guide field of 1:0B0 in a Lx # Ly ¼
819:2# 409:6 domain. Solid lines correspond to parallel momenta and
dashed with perpendicular momenta. Purple, red, and black are at t¼ 0,
50X$1

ci and 350X$1
ci , respectively. Note the extreme anisotropy of the spectra

at late time.

FIG. 13. Distribution of the electron magnetic moment (normalized to
l0 ¼ mec2=2B0) for guide field 0:2B0 (dashed lines) and 1:0B0 (solid lines).
Black corresponds with t¼ 0, red with t¼ 100.
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In particular, we will concentrate on the temperature and
the kurtosis of f, that, for a Maxwellian, must be 1 and 3,
respectively. The preferred directions of f in the velocity
space, for each x, can be obtained from the stress tensor

AijðxÞ ¼
1

n

Z
ðvi $hviiÞðvj $hvjiÞfd3v: (2)

This tensor can be studied in a diagonal form computing
its eigenvalues f!1;!2;!3g. The respective normalized ei-
genvectors f̂e1; ê2; ê3grepresent a proper reference frame,
namely, the minimum variance frame (MVF) [17]. Note
that !i are the temperatures (for convention we choose
!1 > !2 > !3) and êi the anisotropy directions. For a
Maxwellian, the tensor in Eq. (2) is diagonal and degen-
erate (!i ¼ 1 and no preferred direction). Using the eigen-
system, the temperature anisotropy is given by !1=!3.
The probability distribution functions (PDF) of !1=!3 in
Fig. 2(a), evaluated sampling over the entire domain of the
simulation at "? (see Table I), show that f is mostly
isotropic, while only few events manifest strong anisotropy
(!1=!3 % 1:7). A comparison between the simulations re-
veals that higher level of turbulence (Runs II and III)
produces patches with higher anisotropy. Moreover, also
the system size influences the anisotropy phenomenon—
smaller systems (Run III) are slightly more anisotropic.
The latter is due to the fact that kinetic effects are more
active when the system size is comparable to di. We would
like to point out that the main ingredient that enhances
anisotropy is turbulence.

The anisotropy, whose shaded contour is represented in
Fig. 2(b), is confined in sheetlike structures (with the size

of a few di), modulated by the local magnetic field: anisot-
ropy is low inside magnetic islands while is high in be-
tween them. These are regions of strong magnetic stress,
shifted away from the X points. To further investigate these
kinetic effects, we inspected the normalized kurtosis
(fourth-order moment):

#iðxÞ ¼
1
n

Rðvi $hviiÞ4fd3v
½1n

Rðvi $hviiÞ2fd3v'2
: (3)

We projected the above vector in the MVF, obtaining
f#1;#2;#3g. The projected kurtosis manifests opposite
behavior with respect to temperatures: the strongest kurto-
sis is along the maximum variance frame ê3, namely #3 (#3

correlated with !1, not shown here.) The distributions
of kurtosis manifest strong variations from Maxwellian
(#i ¼ 3), suggesting that in turbulence the velocity distri-
butions are leptokurtic [Fig. 2(c)]. Similarly to anisotropy,
patterns of #3 are localized in narrow layers in between
magnetic vortices (not shown here). All the runs behave
similarly.
The comparison between Fig. 2(b) with Fig. 1(a) sug-

gests that these distortions are concentrated in sheetlike
regions, located near the peaks of jz. Therefore these
patterns are characterized by intense jr2b?jð¼ jrjzjÞ—
in a fluid model these would correspond to regions where
collisional dissipation takes place. To quantify this corre-
lation, we computed the joint PDF of current gradients and
anisotropy, gðjr2b?j;!1=!3Þ, shown in Fig. 2(d). This
analysis further confirms the correlation, demonstrating
that kinetic effects are nonhomogeneous and concentrated
in high magnetic stress regions.
It is now interesting to examine the structure of the DF in

the presence of turbulence. Since Eulerian Vlasov models
do not suffer from any lack of statistics in velocity space,
here we provide an example of f, at a given x. In Fig. 3(a)
the isosurfaces of f reveal that the DF is strongly affected
by the presence of turbulence, resembling a potatolike
structure elongated in the ê1 direction (ê3 and the direction

FIG. 2 (color online). (a) PDF of the temperature anisotropy
!1=!3 for all runs (arrows represent averages); (b) shaded-
contour (zoom) of the anisotropy together with the inplane
magnetic field lines (black); (c) PDF of the kurtosis #3;
(d) joint distribution of current gradients and anisotropy
gðjr2b?j;!1=!3Þ. In (a) and (c) the statistical error bars are
also reported.

FIG. 3 (color online). (a) Isosurfaces of the velocity distribu-
tion function fðx?;vÞ, at a given spatial position x( ’
ð60; 119Þdi. (b) Two-dimensional cut of f in the minimum
variance frame. Thin (red) and thicker (blue) axis indicate ê1
and ê3, respectively. The magnetic field direction B̂ is repre-
sented with a thick (magenta) tube.
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velocity. For our lowest βe case, this implies v∥ ∼ vth,e, whereas at larger βe the resonance
condition is satisfied for v∥ < vth,e. Consequently, electron dissipation is more efficient at
higher values of βe. The ion heating, on the other hand, does not spread, occurring only
at the reconnection site, and later inside the secondary island that is formed. For ions,
both parallel and perpendicular phase-mixing processes are active.
In summary, we have shown that electron and ion bulk heating via phase-mixing is a

significant energy dissipation channel in reconnection, extending the results first reported
in (Loureiro et al. 2013b) to the regime of βe ∼ 1. These results, therefore, underscore the
importance of retaining finite collisions in reconnection studies, even if the reconnection
process itself is collisionless.
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!f 0ðEk; E?Þ ¼
!f1ðlB1Þ; trapped

!f1ðE $ eUkÞ; passing:

!
(16)

The trapped passing boundary is given by

E $ eUk $ lB1 ¼ 0; (17)

which we discussed above and is illustrated in Fig. 4. The
distribution in Fig. 4(a) is representative for cases character-
ized by Uk > 0 and B < B1, where both electric and mag-
netic forces help trap electrons. The distribution in Fig. 4(b)

is calculated with Uk < 0 and B < B1, such that the parallel
electric fields repel the electrons reducing the fraction of
trapped electrons.

F. Validation of the model

The analytical form of !f 0 accurately accounts for the
distributions observed by the Wind spacecraft. The color
contours in Fig. 5 are another representation of the Wind
observations shown in Fig. 2(a). The black lines are contours
of constant !f 0 as expressed in Eq. (16) with eUk ¼ 1 keV
and B1=B ¼ 2.

Le et al.18 also validate the analytic model for !f 0 by
comparing it to the results of a kinetic, open boundary parti-
cle-in-cell (PIC) simulation of a reconnecting current sheet.
The profiles of the magnetic field strength B, the electron
density n , and the out of plane current density Jy self-
consistently produced by the simulation are shown in Figs.
6(a)–6(c). The PIC simulation tracks 2 % 109 electrons and
thus allows the full electron distribution function to be con-
structed. The gyro-averaged distribution functions at four
sample points are shown in Figs. 6(d)–6(g). Comparison
with the superimposed level lines of our analytic solution for

FIG. 5. Color contours of the electron distribution measured by Wind, also
displayed above in Fig. 2(a). The overlaid black contours represent !f 0 in Eq.
(16), evaluated with eUk ¼ 1 keV and B=B1 ¼ 2.

FIG. 6. PIC simulation results: (a) Out-
of-plane current density Jy, (b) magnetic
field strength B with points used in Fig.
9, where B=B1 ¼ 0:65 (white) and
B=B1 ¼ 0:85 (black), and (c) plasma
density n . Dashed lines represent in-
plane magnetic field lines. Simulation
electron distribution functions with theo-
retical level lines superimposed along
the cut 30de right of the X line at the
locations indicated in (a) ((d) z ¼ 113de,
(e) z ¼ 123de, (f) z ¼ 133de, and (g)
z ¼ 143de).

061201-7 Egedal, Le, and Daughton Phys. Plasmas 20, 061201 (2013)

Downloaded 01 Jul 2013 to 128.255.35.67. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://pop.aip.org/about/rights_and_permissions

field Ey. Upon entering the exhaust the particle is accelerated
by Ey in the negative y direction when y > 0 and then in
positive y direction as it crosses the midplane into the region
y < 0. The Lorentz force evyBz/c bends the particle velocity
into the outflow direction as the particle undergoes several
bounces across the midplane. This behavior is similar to the
ion dynamics inferred from Cluster observations of a narrow
current layer produced by reconnection in the magnetotail
[Wygant et al., 2005]. Evidence for the resulting counter-
streaming behavior of ions undergoing this bounce motion
is visible in the ion distribution functions in the vx ! vy plane
in Figures 2c–2e. Shown in Figure 2c is the lobe distribution
at x, y = !33.3dp, 5.6dp, shown in Figure 2d is the midplane
distribution at x, y = !33.3dp, 0.0, and shown in Figure 2e is
the midplane distribution further downstream at x,y =
!46.0dp,0.0. The lobe distribution is a cold beam with a
weak drift in the negative y direction, reflecting the inflow
toward the exhaust. There is no evidence of the leakage of

higher-energy particles from the x-line or exhaust. The
midplane distribution in Figure 2d exhibits the symmetric
counterstreaming behavior expected from ion entry into the
exhaust from above and below. The ions with small vx have
just entered the exhaust while those with larger values of vx
have already been accelerated downstream. Further down-
stream the counterstreaming of the small vx particles con-
tinues while the high vx particles have begun to thermalize.
Such counterstreaming behavior has been observed earlier in
simulations [Hoshino et al., 1998; Arzner and Scholer, 2001]
and in distributions measured by satellites in the magnetotail
[Hoshino et al., 1998; Wygant et al., 2005], in the magneto-
sheath [Phan et al., 2007b] and in the solar wind [Gosling
et al., 2005b].
[10] To gain greater insight into the dynamics of the ions as

they enter the exhaust region, we show in Figure 2b more
information about the time dependence of the ionmotion along
its trajectory in Figure 2a. Shown are the ion perpendicular

Figure 2. (a) The trajectory of a proton with a small initial thermal velocity superimposed on the Hall
electric field Ey from the simulation of Figure 1. (b) The time dependence of the x components of
the perpendicular velocity v?x (solid) and E " B velocity vE"Bx (dotted) and the magnetic moment m for
the trajectory in Figure 2a. From the simulation the proton velocity distributions in the x ! y plane
(c) upstream of the exhaust at x, y = !33.3dp, 5.6dp and (d) in the exhaust at the midplane at x = !33.3dp
and (e) further downstream at x = !46.0dp.
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Hierarchy of simulation methods
1) Individual particles: Klimontovich equation

2) Kinetic
-Eulerian
-Lagrangian: Particle-in-cell (PIC)

-Gyrokinetics

-Kinetic MHD

-Drift kinetics

3) Hybrid
-One species kinetic, the other fluid

everything \ {                } 

kkL ⇠ k?⇢ ⇠ 1!/⌦ ⌧ 1
and small fluctuations

�D, me/mi ! 0
fluid electrons, kinetic ions

k⇢ ⇠ !/⌦ ⌧ 1, Ma ⇠ 1

k⇢ ⇠ !/⌦ ⌧ 1, Ma ⌧ 1
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Hierarchy of simulation methods
1) Individual particles: Klimontovich equation
2) Kinetic

-Eulerian
-Lagrangian: Particle-in-cell (PIC)
-Gyrokinetics
-Kinetic MHD
-Drift kinetics

3) Hybrid
-One species kinetic, the other fluid

4) Fluid
-Landau fluid

-Braginskii

-Extended MHD
* Two fluid, Hall MHD, CGL

-MHD

-Incompressible MHD, reduced MHD

fluid equations + closure mimicking collisionless 
damping

fluid equations + anisotropic transport due to magnetization

MHD + vestiges of kinetic effects

additional assumptions added to 
further simplify MHD



(due to Klimontovich)

positions of  
particles of 
species α

velocities of  
particles of 
species α

lim
drdv!0

Z
drdv F↵(r,v, t) is either 1 or 0

F↵(r,v, t) =
N↵X

i=1

�(r �R↵i(t))�(v � V↵i(t))

if you know              and            , and can solve R↵i(0) V↵i(0)

dR↵i

dt
= V↵i

dV ↵i

dt
=

q↵
m↵


Em(R↵i, t) +

1

c
V↵i ⇥Bm(R↵i, t)

�

then you know everything. Done.

First, a brief review of where Vlasov comes from…



r ·Bm = 0

r ·Em = 4⇡
X

↵

q↵

Z
dv F↵(r,v, t)

r⇥Bm =
1

c

@Em

@t
+

4⇡

c

X

↵

q↵

Z
dv vF↵(r,v, t)

r⇥Em = �1

c

@Bm

@t

Rather than evolve         and        , solveR↵i V↵i

“Microphysical” fields computed from Maxwell’s equations

@F↵(r,v, t)/@t =
@

@t

N↵X

i=1

�(r �R↵i(t))�(v � V↵i(t))
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r ·Bm = 0

r ·Em = 4⇡
X

↵

q↵

Z
dv F↵(r,v, t)

r⇥Bm =
1

c

@Em

@t
+

4⇡

c

X

↵

q↵

Z
dv vF↵(r,v, t)

r⇥Em = �1

c

@Bm

@t

Rather than evolve         and        , solveR↵i V↵i

“Klimontovich equation”

“Microphysical” fields computed from Maxwell’s equations
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◆
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The Klimontovich equation is equivalent to phase-space 
conservation, but it is NOT a statistical equation.  

It looks like the Vlasov equation, but it is completely different! 

With proper initial conditions,  
it is deterministic, not probabilistic. 

This makes it cumbersome… but it does form the basis of 
particle-in-cell (PIC) methods and statistical plasma kinetics. 

Let’s see the latter…

An important note



Ensemble averaging over all microscopic realizations  
of the macroscopic plasma (which is equivalent  
to a coarse-graining procedure by ergodicity),


@

@t
+ v ·r+

q↵
m↵

✓
E +

1

c
v⇥B

◆
· @

@v

�
f↵(r,v, t) =

� q↵
m↵

⌧✓
�E +

1

c
v⇥ �B

◆
· @F↵

@v

�

LHS = Vlasov equation
RHS = collisions due to discrete nature of particles

⇠ ⇤�1 .
= (n�3

D)
�1 ⌧ 1 the LHS

this is probabilistic (even more so once the RHS is simplified)

Averaging



solve

@

@t
+ v ·r+

q↵
m↵

✓
E +

1

c
v⇥B

◆
· @

@v

�
f↵(r,v, t) =

✓
@f↵
@t

◆

coll

dR↵i

dt
= V↵i

dV↵i

dt
=

q↵
m↵

✓
Em +

1

c
V↵i ⇥Bm

◆

or

in 6D phase space (“Eulerian”)

for a finite number of (macro)particles (“Lagrangian”)  
(f = const on these characteristics)

solve

Eulerian (Continuum) vs Lagrangian (PIC)



In the Lagrangian case, you really don’t want to do  
particle pairing for ~1010 particles per Debye cloud!

concept of (macro)particles communicating with one another 
electromagnetically via a grid; reduction in # of pairings

particle-particle particle-mesh (PIC)

number of pairs: N(N � 1)

2
/ N2 / N

Macroparticles plus a grid



• Only 3D grid needed for real space;  
Monte-Carlo sampling of velocity space;  
means that parallelization is easy and  
usually gives good scaling 

• Easy to write 
• “Unlimited” dynamical range for particle  

velocities; no boundary conditions on v

• Difficult to include explicit collisions; 
usually not even implemented 

• Limited phase-space density resolution 
• Errors from finite-size particles (smoothing) 
• Load balancing issues

• √N noise! Need lots of particles to capture  
phase mixing, collisionless damping, and  
small-amplitude fluctuations properly 

• Things can go unpredictably wrong

Lagrangian (Klimontovich/PIC)



• No noise 
• Good control over dissipation;  

easier to include collisions 
• No issues if plasma very inhomogeneous

• 6D grid -> extremely expensive; often  
results in poor velocity-space resolution 

• Difficult to parallelize efficiently

• Velocity space isn’t (easily) adaptable, …

Eulerian (Vlasov-Landau)



• Dawson’s sheet model (1962): 1000 sheets in 1D;  
started late 1950s at Princeton, later @ UCLA 

• Hockney, Buneman (1965): introduced grids and 
direct Poisson solve 

• Finite-size particles and PIC (Dawson et al. 1968; 
Birdsall et al. 1968) 

• Short-wavelength and high-frequency particle noise  
minimized via charge sharing and smoothing 
schemes; noise studied by fluctuation-dissipation 
theorem (Klimontovich 1967; Langdon 1979; Birdsall 
& Langdon 1983; Krommes 1993 for GK PIC) 

• 1980s-90s 3D electromagnetic PIC booms;  
“PIC bibles” 1988 and 1990

PIC simulations: Some history



PIC simulation successes
PIC has been enormously successful for modeling large amplitude, kinetic phenomena 

NATURE PHYSICS DOI: 10.1038/NPHYS1965 LETTERS
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Figure 3 | Formation of secondary flux ropes. a,b, Slice of the current
density at y= 35di from the 3D simulation (a) compared with the
corresponding 2D result (b). c, The structure of the separatix layer at the
location indicated. Profiles in c are shown in the minimum-variance frame
(18⇥ rotation about y followed by 52⇥ rotation about z⇧). d, Fitting to a
Harris profile gives a half-thickness ⌦⌅ 2de with guide field B⇧

y ⌅4.4B⇧
x0,

resulting in the growth rate shown. e, The power spectrum |B̂z|2/B2x0 for the
3D simulation on a log scale. The solid white line corresponds to the
dominant angle, whereas the dashed line is the simple estimate from c.

To illustrate this point, Fig. 3 compares a slice of the current density
between the 3D and a corresponding 2D case at time t⌃ci = 78.
Whereas the current layers along the separatrices are stable in two
dimensions, these layers are violently unstable in three dimensions
to the formation of flux ropes over a wide range of oblique angles
as shown in Fig. 3a, causing the current density to become highly
filamented and time dependent.

It seems that these dramatic differences between two and three
dimensions are due to tearing-type instabilities driven by the strong
magnetic shear across the electron-scale layers. To demonstrate this
mechanism, the profiles of the current density and magnetic field
are shown in Fig. 3c across the separatrix layer in the 2D simulation.
Fitting the profiles to a local Harris sheet corresponds to ⌦⌅ 2de,
with a magnetic shear angle of 26⇥ across the layer. The kinetic
theory26 for these parameters in Fig. 3d predicts � /⌃ci ⌅ 0.42 for
the fastest-growing modes with kde ⌅ 0.2. At realistic hydrogen
mass ratio, the growth rate increases to � /⌃ci ⌅ 4.2 assuming
that the layer thickness remains on the scale ⇤2de. The separatrix
current layer in Fig. 3b from the left boundary to the first X line
is approximately ⇤220de long, which implies it should break up
into seven filaments, whereas there are four rope structures visible
in Fig. 3a. However, this separatrix layer actually begins to break
up at time t⌃ci ⌅ 60, and originally forms six filaments. Thus
some of these structures have already coalesced by time t⌃ci ⌅ 78
shown in Fig. 3. The angle of the modes is determined by k ·B= 0
near the centre of the electron layer at the time of break-up. The
sample profiles from the 2D case in Fig. 3b,c correspond to ⇥ ⌅ 52⇥,
which is larger than the observed angles for these structures in
Fig. 3a. Again, exact agreement is not expected because filamentary
structures begin forming at earlier time in the 3D simulation. To
better quantify the structure of the magnetic-field perturbations,
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Figure 4 |Development of turbulent reconnection. At late time t⌃ci =98,
the secondary flux ropes have grown to large amplitudes and interact over
a wide range of angles, giving rise to a turbulent evolution. The 3D structure
is illustrated by an isosurface of particle density coloured by current
density, along with selected magnetic-field lines (yellow). To illustrate the
observational signatures of these flux ropes, the normal magnetic field Bz,
total magnetic field |B| and electron density ne are plotted along
two trajectories.

the power spectrum of Bz is given in Fig. 3e. The form of the
spectrum is much broader in k space and indicates the presence of
highly anisotropic narrow structures in Bz , which are signatures of
the flux ropes. The peak power occurs for ⇥ ⌅ ±34⇥, but there is
actually significant power out to ⇥ ⌅ 52⇥ consistent with the above
estimate. On the basis of these results, it seems that the growth time,
wavelength and angle of these structures are consistent with tearing
instabilities in the electron layers.

The 3D structure of the turbulent reconnection is illustrated in
Fig. 4 at somewhat later time t⌃ci = 98, where the oblique flux
ropes have grown to larger amplitude and the helical magnetic-
field structure of the ropes is clearly visible. The simulation is
dominated by the interaction of highly anisotropic structures
across multiple scales, including electron-scale current sheets that
continually reform and break up into filaments, along with flux
ropes generated at these scales and quickly growing well above ion
scales. This turbulence is highly inhomogeneous and is continually
self-generated within the reconnection layer, which in the present
study is embedded in an otherwise laminar plasma.

These results have immediate implications for spacecraft obser-
vations of magnetic reconnection. In the solar wind, observational
studies of reconnection27 are based on an assumed, idealized, 2D
geometry with flux ropes centred in the reconnection exhaust. Nei-
ther of these assumptions is consistent with the structure observed
in Fig. 4. Our results indicate the need to expand the identification
criteria to cover themore complex behaviour reported here. Indeed,
whereas many examples of essentially 2D laminar exhausts have
been reported27, other cases indicate thatmore complicated features
are present28. However, essentially all observations of reconnection
in the solar wind are >1,000di downstream from an active X line,
and it remains unclear from our initial study how far downstream
this turbulencemight persist in these extremely large systems.

At themagnetopause, flux ropes are commonly referred to as flux
transfer events29 andmay play an important role in transport across
the magnetopause. However, their formation mechanism and
precise signatures remain under debate. Of the leading ideas29–31,
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2

Gauss’s law is enforced by the frequent use of a Poisson
solver to correct the D field.

We evolve the particles with a time-symmetric Strang
splitting of Eqns. (3) and (4). First the momentum is
pushed forward by half a time step with the Lorentz force
term alone, using the Boris algorithm in the FIDO’s lo-
cal frame by means of a tetrad basis. Then the position
equation, and the gravitational and coordinate terms in
the momentum equation, are evolved together for a full
time step, using an iterative symplectic integrator. Fi-
nally the Lorentz force again acts on the momentum for
another half time step. This scheme conserves energy in
the absence of electric fields, and is relatively computa-
tionally cheap. The numerical methods developed for the
field and particle evolution will be described in detail in
a future paper.

Our initial field configuration is Wald’s stationary vac-
uum solution for a rotating black hole immersed in
an asymptotically uniform magnetic field, aligned with
the hole’s angular-momentum vector, which includes the
electric field generated by spacetime rotation [30]. There
are no particles in the initial state. We use the Kerr met-
ric with spin parameter a = 0.999 and the Kerr-Schild
spacetime foliation in spherical coordinates (r, ✓, �). Here
we focus on two high-resolution simulations; we also per-
formed several runs at lower resolution to infer the de-
pendence on various parameters.

We set the field strength at infinity to B0 = 103 m/|e|,
so moderately relativistic particles initially have Larmor
radii rL,0 ⇠ 10�3 and gyro frequencies ⌦B0 = 103. This
provides a reference scale for many quantities, such as the
Goldreich-Julian number density n0 = ⌦HB0/4⇡e, where
⌦H = a/(r2

H
+ a2) is the angular velocity of the horizon

at r = rH, and the magnetization �0 = B2

0
/4⇡n0m =

⌦B0/⌦H ⇡ 2000. These scales imply the astrophysically
relevant ordering rL,0 ⌧ �0 ⌧ rg, where �0 =

p
�0 rL,0 is

the skin depth.
The axisymmetric computational domain covers

0.985 rH  r  8 and 0  ✓  ⇡. The grid consists of
Nr ⇥ N✓ = 1280 ⇥ 1280 cells, equally spaced in log r and
cos ✓, which concentrates resolution toward the horizon
and the equator. The simulations have duration �t = 50.
Waves and particles are absorbed in a layer at the outer
boundary [31]. The inner boundary lies inside the horizon
and all equations are solved there without modification.

Plasma is introduced throughout the simulation in the
volume rH < r < 6. We defer a realistic treatment of
pair-creation physics to future work, and instead use a
simple prescription which allows us to specify how pre-
cisely the force-free D · B = 0 condition is satisfied [32].
In each cell, at each time step, an electron-positron pair is
injected, with each particle conferring an e↵ective FIDO-
measured density of

�ninject =
R

4⇡e

|D · B|
B

, (5)
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FIG. 1. Toroidal magnetic field, field-aligned current, and
4-current norm for the high-plasma-supply scenario in the
steady state. The ergosphere boundary is shown in green,
and magnetic flux surfaces are in black; dashed lines indicate
the same flux surfaces in the initial Wald state.

provided that |D·B|/B2 is greater than a threshold ✏D·B ,
and that the non-relativistic magnetization � > �0/20.
We set R = 0.5 and create two scenarios, motivated
by the range of pair-creation environments around as-
trophysical black holes: a “high plasma supply” scenario
with a small pair-creation threshold, ✏D·B = 10�3, and
one with “low plasma supply” where ✏D·B = 10�2. These
di↵erent pair-injection thresholds lead to two distinct
states of the system. The particles are injected with ve-

Black hole 
jet formation (ZELTRON)
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In the experiment, the counter-streaming fluorine ions have a col-
lisional mean-free-path of ~ 5 mm (see Supplementary Information),  
to be compared with their gyroradius ~ 2 cm. This does not affect 
the growth of the lower-hybrid instability13.

Our results provide compelling evidence that lower-hybrid 
waves play an important role in energizing electrons, and thus pro-
vide a potential mechanism for overcoming the injection problem 
for perpendicular shocks. We infer the presence of this electron 
energization by the observation of excess X-ray emission from 
the plasma when a magnetized sphere is present. The magnetized 
sphere permits the generation of lower-hybrid waves through a 
shock-reflected ion instability, thus allowing these waves to ener-
gize the electrons by energy transfer from the ionic motion. While 
this electron energization process has been inferred in many astro-
physical environments, it is not fully understood, and so makes our 
experiment an important platform for the validation of the particle 
acceleration models frequently invoked to explain the high-energy 
electrons observed at strong astrophysical shocks.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41567-018-0059-2.
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Fig. 4 | OSIRIS PIC simulations. a, Injected ion density. b, Electron 
temperature. c, Wave spectrum. The wave spectrum is calculated by 
performing a Fourier transform on the ion density to gain information on 
the parallel and perpendicular k-numbers. The black dashed lines indicate 
modes that have a ratio in k-number consistent with the lower-hybrid 
dispersion relation for ions reflected horizontally off of the shock. The black 
dotted lines indicate modes that have a ratio in k-number consistent with 
the lower-hybrid dispersion relation for ions reflected on the flanks of the 
bow shock. All figures are taken at the same time of 6 ion cyclotron periods.
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PIC algorithm [Birdsall and Langdon (1991)]

• Solve Vlasov equation along characteristics

• Describes “single” particle evolution in 
Lagrangian framework

• Each particle is really a super particle, 
representing many real particles, although q/
m is kept the same

• Fields are not between individual particles

Ej − Ej−1

∆x
= 4πρcj

Solving Maxwell’s equations requires a 
grid, e.g.,

mdv
dt = q(E + v � B), dx

dt = v

� · E = 4��c

1
c

�E
�t = � � B � 4�

c J

c� � E = ��B
�t

� · B = 0

�f
�t + v · �f + q

m

�
E + v

c � B
�

· �vf = 0



mdv
dt = q(E + v � B), dx

dt = v

� · E = 4��c

1
c

�E
�t = � � B � 4�

c J

c� � E = ��B
�t

� · B = 0

PIC simulations: General idea

note: sometimes fields are subcycled to reduce cost,  
but great care must be taken to avoid instability
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Boris (1970) algorithm (time-reversible, conserves energy and 
phase space volume):

makes small phase error

can overstep gyromotion without stability issues (just accuracy issues…)
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How do we put the particles on the grid?
10 OVERALL VIEW OF A ONE-DIMENSIONAL ELECTROSTATIC PROGRAM 

Figure 2-2b A mathematical grid is set into the plasma region in order to measure charge and 
current densities p ,  J from these we will obtain the electric and magnetic fields E, B on the 
grid. A charged particle q at ( x , y )  will typically be counted in terms of p at the nearby grid 
points (O,O), (l,O), ( l , l ) ,  (0.1) and in terms of J at the faces between these points. The force 
on q will also be obtained from the fields at these nearby points. 

PROBLEMS 

2-211 Sketch the electric field E ( x )  versus x for the Id model of Figure 2-2a, for various boun- 
dary conditions, such as (a) potential equal to zero at x = 0, x = L, or (b) the system is 
periodic, with period of L ,  or (c) there is an applied potential difference [say, d(0) = 0, 
4(L) = Vd.  Let the charges have some thickness as shown in Figure 2-2a to show E within 
the charge. Consider neutral and nonneutral systems (equal or nonequal numbers of positive 
and negative charges). Consider a stationary uniform background of charge of one sign and 
sheet charges of another sign, with net neutrality; show p ( x ) ,  E ( x ) ,  and t$(x). 

2-2b Let the charge density of a sheet extend from x, to Xb, and be zero outside these values. 
Show that the electrostatic force on the sheet, for arbitrary charge distribution within the sheet 
[that is, p ( x )  is arbitrary between x, and xb1. is q ( E ( x , )  + E ( x b ) ) / 2 ,  where q is the total 
charge per unit area of the charged sheet. Hint: Consider the integral SpEdx 

= S & ( E 2 / 2 a o ) &  across the sheet. This simple and ancient result is a "gift" of the one- 
dimensional model, one of several that we will use to advantage. (See, e.g., Portis, 1978, p. 68, for 
force on charged sheet and p. 324 for force on a current sheet.) 

2-2c The text states that the fields can be found exactly analytically in one dimension so that a 
spatial grid is not needed solely for this purpose. Suppose that we used sheets of zero thickness 
and found the fields exactly at time t and then again at time t + A t ,  etc.; however, these fields 
change only when two (or more) particles cross which may be during A t ,  leading to error. 
What corrections would you suggest to account for such crossing(s) during A t ?  (See Duwson, 
1970, p. 4-10, for discussion of sheet crossings.) Explain why a gridded model with finite-size 
particles has less of a problem in accounting for crossings. 

Copyright © 1991 IOP Publishing Ltd.
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Figure 2-6a (a) Zero-order particle and field weighting, also called nearest-grid-point, or, NGP. 
Particles in the j f h  cell, that is, with positions xp X j  .+ A x /  2, are assigned to X j  to obtain grid 
density n ( X j ) .  All of these particles are acted on by the field at Xi, E ( X j ) .  (b) The density 
n j ( X i )  at point X j  due to a particle at xi, as the particle moves through the cell centered on X j .  
This density may be interpreted as the effective particle shape. 

between plasma particles are rare (i .e. ,  for many particles in a Debye length, 
No >> 1, virtually all collisions are at large impact parameter), this new 
physics hardly alters the basic plasma effects to be studied. The second 
effect is that the jumps up and down as a particle passes through a cell boun- 
dary will produce a density and an electric field which are relatively noisy 
both in space and time; this noise may be intolerable in many plasma prob- 
lems. Thus, we look for a better weighting. 

First-order weighting smooths the density and field fluctuations, which 
reduces the noise (relative to zero-order weighting), but requires additional 
expense in accessing two grid points for each particle, twice per step. We 
may view this step either as an improvement in using finite-size particles or 
as one of better interpolation. The charged particles seem to be finite-size 
rigid clouds which may pass freely through each other. We call the model 
cloud-in-cell or CIC (Birdsail and Fuss, 1969). If we take the nominal cloud to 
be of uniform density and to be A x  wide as shown in Figure 2-6b(a) (the 
so-called square cloud), then the grid assignment is self-evident, using NGP 
for each element. That is, for total cloud charge of qc, the part assigned to j 
is 

(1) Xj+l - xi 
= q c  A x  I [ A x  - ti- Xj> 

4j 4 c  

Copyright © 1991 IOP Publishing Ltd.
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Figure 2-6b (a) First-order particle weighting, or cloud-in-cell model CIC. The nominal finite- 
size charged particle, or cloud, is one cell wide, with center at xi. This weighting puts that part 
of the cloud which is in the j f h  cell at X,, fraction (a), and that part which is in the ( j  + 
cell at X,+l, fraction (b). This weighting is the same as applying NGP interpolation to each ele- 
mental part. (b) The grid density n,(xi) at point xi as the particle moves past X,, again display- 
ing the effective particle shape s ( ~ ) .  

and the part assigned to j + 1 is 

The net effect is to produce a triangular particle shape S(x) which has 
width 2Ax. In computation, the nearest left-hand grid point j is located 
first, so that xi > X j  always; then the weights are calculated and the charges 
assigned. Note that assignment of a point charge at xi to its nearest grid 
points by linear interpolation would produce the same result; this viewpoint 
is called particle-in-cell, or PIC modeling. As a cloud moves through the grid, 
it contributes to density much more smoothly than with zero-order weight, 
as seen from Figure 2-6b(b); hence, the resultant plasma density and field 
will have much less noise and be more acceptable for most plasma simula- 
tion problems. 

Higher-order weighting by use of quadratic and cubic splines rounds off 
further the roughness in particle shape and reduces density and field noise, 
but at the cost of more computation. The use of splines for higher-order 
weighting is discussed later. Also, the effective particle shape may be altered 
during the field calculation after the charge density p(x) is Fourier 
transformed to p ( k ) ,  e.g. ,  by cutting off p ( k )  at some /clast or multiplying 

Copyright © 1991 IOP Publishing Ltd.

Consider a cloud of plasma in your 
simulation domain. How do you represent 

the charge density on the grid?

Particles must have a shape associated with them. The shape corresponds to the order of 
interpolation, with higher orders leading to less noise.
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Simulation particles are not delta functions in real space; 
they represent large number of physical particles: 

“macroparticles” or “Lagrangian markers”

“shape function”
dictates how much phase-space density 

is assigned to a given grid cell

Step 2: Deposit particles to grid



inter-particle forces 
inside a cell are 
underestimated; 

collisions must be 
re-introduced for 

controlled dissipation 
(rarely done)

Finite-size particles 
considerably reduce 
Coulomb interactions

Coulomb force between finite-size particles



assigned to whatever cell contains particle  
(bad: discontinuous forces)

effective particle shape
“interpolation

function”

0th-order particle weighting (nearest neighbor)



assignment proportional to overlapping volume  
(ok: continuous forces, discontinuous derivatives)

effective particle shape
“interpolation

function”

1st-order particle weighting (cloud-in-cell; CIC)



What sort of error does the particle shape cause?

312 ELECTROSTATIC PROGRAMS IN TWO AND THREE DIMENSIONS 

Figure 14-4a Particle shape for zero-order weighting in 2d (NGP), which is uniform as viewed 
by the grid, of size Ax by A y ,  centered on a grid point. (From Birdsall and Fuss, 1969.) 

A y )  is 

We may produce the particle shape S ( x , y )  by measuring the charge assigned 
to a grid point as the'particle moves relative to that point. Hence, (1) pro- 
vides the particle shape. The particle density contours are shown in Figure 
14-4d, indicating an improvement over the flat, rectangular NGP particle 
(Ax by A y ) ,  yet not quite circular. The force is now piece-wise continuous, 
as shown in Figure 14-4e, reducing the noise and the self-heating relative to 
NGP . 

The Fourier transform of the particle shape factor, S ( x , y )  to S ( k x ,  Icy), 
is informative. In particular, S (k, , ky indicates the coupling into the funda- 
mental Brillouin zone ( IkxAx I < n, IkyAy I < n)  from shorter wavelengths, 
that is, aliasing. S(k) for linear weighting (CIC, PIC) was shown in Figure 
11-6c. Note that S(kx ,O)  and S(O,ky )  are the same as in Id, so that cou- 
pling from the Ipx 1 = 1, pv = 0 and px = 0, Ipy I = 1 zones into the funda- 
mental (0,O) zone is much as in Id; see 8-9 (9) for definition of p. The 
(1, l )  coupling is much smaller, as the Smax(l, 1) = 0.15 [whereas 
Smax(0,l) ==: 0.41. Note that S ( k x ,  k,) is very nearly S ( k ) ,  k = (k: + k$' 
in the (0,O) zone and remains nearly isotropic well into the (0,1), (1,O) and 
(1, l )  zones. Compare this S ( k )  with that for the "improved dipole" shown 
in Figure 11-6b, which has larger anisotropy and larger values of IS I well out 
of the (0,O) zone, hence, larger coupling to aliases. 

Second-order assignment (QS, quadratic spline) is to the nearest nine 
grid points, given by 

Copyright © 1991 IOP Publishing Ltd.
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Figure 14-4b Force produced by a charge in the cell at the origin on a second charge at x for 
zero-order weighting, NGP. The second particle moves parallel to the x-axis. The dashed line 
shows the physical 1/r law for the second particle located at the circles, centers of cells. (From 
Hockney, 1966.) 

(force), 
I L  

Figure 14-4c Similar to Figure 14-4b, but including the second particle moving at 45" to the x- 
axis where the peak force is less and the steps are (2)"' longer. (From Eastwood and Hocknq, 
1974.) 
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Figure 14-4d Particle density contours for linear weighting in 2d (CIC, PIC). The total particle 
area is 4 Ax Ay. (From Birdsall and Fuss, 1969.) 
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Figure 14-4e (a) Force between two particles for linear weighting (CIC, PIC). A positive charge 
is located at the origin (a grid point). The force on a positive charge is shown, as this charge 
moves along the x axis or at e = ~ / 4 .  The 5 point Poisson stencil was used. (b) Same as (a) 
but for the 9 point Poisson stencil. (From Eastwood and Hockney, 1974.) 

where S ( x )  is S 2  of 8-8(2-4). Density contours, profiles and the force are 
shown in Figure 14-4f. S ( k )  is given by 8-9(16). There is additional com- 
putational effort in weighting the particle to 9 points (beyond the 1 point of 
NGP, 4 of CIC, PIC) but the particle is now nearly circular. The particle is 
also larger in area; for Ax = A y ,  the NGP particle has area ( A x ) 2 ,  the CIC, 
PIC particle has area  AX)^, and the QS particle has area  AX)^. 

The reader is encouraged to obtain S(k) for any new proposed weight- 
ings prior to use. 
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Particle shape

0th order

1st order

Force on second particle

�F = q(E � E0)

Error in the force

leads to noise and heating



effective particle shape

assignment proportional to overlapping volume  
(good: continuous forces and first derivatives)

2 ∆ x

CHARGED CLOUD
TRIANGULAR SHAPED

“interpolation
function”

2nd-order particle weighting (triangular shaped cloud; TSC)



In principle, higher-order shape functions can be used, 
which result in better spatial filtering of high-frequency 

components; but these require a larger stencil, 
which means many more accesses of memory 

> 2nd-order deposition rarely used

Instead, spatial filtering performed to smooth moments 
spectral code: trivially done in k space 

grid code: done by “digital filtering” (Hamming 77)

Particle shape in practice
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@t
= �cr⇥E

r ·B = 0

@E

@t
= cr⇥B � 4⇡

X
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i=1

V↵i S(r �R↵i)

r ·E = 4⇡
X

↵

q↵

N↵X

i=1

S(r �R↵i)

evolution equations:

constraints:

broken by truncation error if you’re not careful!

Step 3:  Update fields



Bn+1/2 �Bn�1/2

�t
= �r⇥En

En �En�1

�t
= r⇥Bn�1/2 � Jn�1/2

Symmetry of Maxwell’s equations suggests leapfrog:



Interpolation to/from grid must be done in same way, 
or else you get self-force

E(Rp) =
X

i,j,k

E(ri,j,k)S(ri,j,k �Rp)

B(Rp) =
X

i,j,k

B(ri,j,k)S(ri,j,k �Rp)

(i, j, k) (i+ 1, j, k)

(i+ 1, j + 1, k)(i, j + 1, k)

X

i,j,k

E(ri,j,k) ·B(ri,j,k)S(ri,j,k �Rp)
?
= E(Rp) ·B(Rp)

better be…

Step 4:  Interpolate grid to particles
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Figure 8-13b Solutions of the exact and average-force dispersion relations with A D /  A x = O . l ,  
NGP interpolation. The Im o > 0 for 0 < k A x  < 2.5 is nonphysical growth, due to aliasing, 
arising only if Ipl > 0 terms are kept. In CIC-PIC, the maximum growth rate is about 0.0140p, 
about 10 times smaller. (From Langdon, 1970a.) 

Figure 8-13c Wave phase velocity w /  k and alias wave phase velocities W /  k,, and f o ( v )  for 
k, v t  - or (From Langdon, 19706.) 

If h o / A x  is decreased further, only the weaker, large p aliases contri- 
bute and the instability goes away, as it should since, of course, a cold sta- 
tionary plasma is inactive (oscillatory only -stable). In many applications, 
such as that of Section 5-12, a cold plasma component provides accurate, 
noise-free collective behavior. 

In studying this instability experimentally, there are difficulties without 
using a very large number of particles to ensure that the linear approxima- 
tion is not violated by too-large fluctuations and grid noise forces or that the 
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• Particles live on a continuous domain, which contains the minimum pos-
sible wavelength to which the particles can respond, kp�e = 1, but the
grid is discrete and has a lower bound on the wavelength, kg.

• This means that a particle wave may have phase speed vp = �/kp, but
the grid wave will have vg = �/kg.

• For kg � 1/�e, vg � vp, and the particles may be strongly resonant with
the wave, leading to self-heating.

• In practice, the plasma heats until the Debye length is resolved.



PIC numerical heating [TenBarge et al, PoP (2014)]
Tk ! 0 at some locations in the simulation domain. This
phenomenon is responsible for the significant disagreement
between AstroGK and PIC for run bi0:01Bg 5. All ratios in
Table I agree relatively well, aside from the higher B̂g runs,
whose values are dominated by small-scale noise fluctua-
tions. AstroGK does consistently underestimate some quanti-
ties such as density for bi ¼ 1 and vi

z; the reason for this
disagreement will be explored in more detail in a forthcom-
ing paper. There are two significant implications stemming
from the overall good agreement: (1) The linear normaliza-
tion of the PIC results by the strength of B̂g implies that
quantities associated with reconnection scale linearly with
B̂g in the B̂g " 1 limit, a heretofore unobserved result. (2)
AstroGK accurately predicts the magnitudes of many quanti-
ties well outside its regime of formal applicability.
Agreement with the PIC results at low B̂g and bi implies that
AstroGK accurately predicts such phenomena as suprather-
mal outflow velocities and Oð1Þ density and magnetic fluctu-
ations, predictions that violate the ordering assumptions of
GKs.

For the PIC simulations, E ¼
Ð

d3r=V B2=8p þ
P

sms

"

n0sdU2
s =2 þ 3Ps=2Þ is a well conserved quantity, where all

bulk velocity, U, is assumed to be fluctuating and the small
contribution from the electric field has been neglected.
However, the conservation of this expression for the energy
assumes a collisional system, which the effective collisional-
ity inherent to PIC simulations provides. Since AstroGK is a
continuum code and being run in the collisionless limit for
this comparison, the above form of the energy is not a well
conserved quantity. This is because energy in velocity space
cascades toward sharper gradients through linear and non-
linear phase space mixing, which implies that energy is
transferred to progressively higher moments as the system
evolves unless collisions smoothen velocity space. The rele-
vant conserved quantity in GKs is the generalized energy8,32

W ¼
ð

d3r

V

dB2

8p
þ
X

s

ð
d3v

T0sdf 2
s

2F0s

" #

¼
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dB2

8p
þ
X

s

1

2
msn0sdU2

s þ
ð

d3v
T0sd~f

2

s

2F0s

" #

; (3)

where d~f s is the portion of the perturbed distribution that
does not contribute to the bulk velocity. We will treat the d~f s

term as equivalent to the perturbed portion of the 3Ps/2 term
from PIC.

To avoid choosing a value of ! to compare the evolution
of the energy in each system, we examine only the fluctuat-
ing energy in PIC by removing Bg and the initial background
Ps, dE¼

Ð
d3r=V dB2=8p þ

P
smsn0sdU2

s =2 þ 3dPs=2
" $

.
This quantity is well conserved for most of the PIC simula-
tions but is conserved only to the 10%–20% level for all val-
ues of B̂g at bi ¼ 1 and B̂g ¼ 50 for bi ¼ 0:01. The poor
conservation is due to poor SNR in these runs and appears
primarily in the electron bulk kinetic and thermal energies.

The evolution of the fluctuating magnetic, bulk kinetic,
and thermal energies from their respective initial energies
are plotted in Figure 4 for all of the simulations. All energies
are normalized to the total fluctuating energy at the

beginning of each simulation, dE0. Aside from the high B̂g

run having poor SNR, the evolution of the magnetic, bulk ki-
netic, and ion thermal energies show excellent agreement
across all simulations for which B̂g > 1. The significant dis-
agreement for the electron thermal energy for bi ¼ 1 is
dominated by numerical heating of the entire simulation do-
main. Note that although the relative energy change matches
well across all runs, the free energy in each simulation scales
with B̂

& 2

g . Therefore, the large B̂g cases have significantly
less energy available to accelerate and heat particles.

In the large guide field limit, we have shown that the
fully kinetic particle-in-cell simulations converge to gyroki-
netic results for 2.5D magnetic reconnection. Morphological
convergence was shown to require biBg =dB0 ! 1 and
Bg =dB0 " 1, implying much stronger guide fields are
needed at low bi to achieve convergence, where dB0 is the
reconnecting field. Reconnection rates, relative energy con-
version from magnetic to bulk kinetic and thermal energies,
and appropriately normalized overall magnitudes were found
to match well for all values of bi and Bg =dB0 > 1. The
observed amplitude scaling implies that gyrokinetics is capa-
ble of making accurate predictions well outside its formal re-
gime of applicability, and that magnetic reconnection in the
large guide field limit produces quantities that scale linearly
with the guide field strength, which implies that a single sim-
ulation can be scaled to represent a range of guide fields.
This study validates the use of gyrokinetics as alternative
means of studying reconnection in the strongly magnetized
kinetic regime. Future work will examine these simulations
in greater detail, including their temporal evolution, compar-
ison to linear theory, and development of secondary
instabilities.

The authors thank James Drake for helpful discussions.
This work was supported by the US DOE Grant No.
DEFG0293ER54197, NSF CAREER AGS-1054061, NASA

FIG. 4. Plots of the change in the (a) and (d) magnetic, (b) and (e) bulk ki-
netic, and (c) and (f) thermal energies from their initial values for (a)–(c)
bi ¼ 0:01 and (d)–(f) bi ¼ 1. Solid lines indicate ion quantities and dashed
lines are electron. All energies are normalized to the total initial energy in
the system. Color scheme is the same as Figure 1.
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Black = continuum, gyrokinetic result
Colors = PIC with different guide field strength (SNR)



(VPIC at Los Alamos)

Some popular PIC codes



Hands on demonstration using OSIRIS

Please go to: https://jupyter.picksc.org/

bwinjum@ucla.edu

https://jupyter.picksc.org/
mailto:bwinjum@ucla.edu


Gkeyll Simulation Framework



What does a Langmuir wave simulation look like in continuum Vlasov?

Let’s look at a continuum Vlasov simulation of 
a single Langmuir wave using the Gkeyll 
(https://gkyl.readthedocs.io/) simulation code

(nx, nv) = (32, 64), p = 2
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Lx = 4⇡�D
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�10vte  v  10vte
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�n/n0 = 0.005
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

Fourier Transform
of ne

Theory



How about the distribution function?

= hF ix
<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

F

F(x,v)

δF = F - F(t=0)



• PIC is a powerful and efficient tool for exploring collisionless kinetic physics

• As with any tool, it should be applied with care (black boxes are dangerous!)

• Many improvements continue to be made to PIC, e.g., porting to GPUs/heterogenous 
architectures, AMR, vectorization, improved sorting and load balancing

• Yet, some problems remain better suited to alternative kinetic approaches, e.g., Eulerian 
Vlasov or gyrokinetics

• Especially global simulations, where hybrid kinetic or extended MHD models still rule

Concluding thoughts

Thanks for listening and participating!

Special thanks to
Ben Winjum and Matt Kunz


