Numerical Methods for Kinetic Plasmas
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Hierarchy of simulation methods

1) Individual particles: Klimontovich equation

2) Kinetic
-Eulerian
-Lagrangian: Particle-in-cell (PIC)

-Gyrokinetics

-Kinetic MHD

-Drift kinetics

3) Hybrid
-One species kinetic, the other fluid
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Hierarchy of simulation methods

1) Individual particles: Klimontovich equation
2) Kinetic
-Eulerian
-Lagrangian: Particle-in-cell (PIC)
-Gyrokinetics

-Kinetic MHD
-Drift kinetics

3) Hybrid
-One species kinetic, the other fluid

4) Fluid fluid equations + closure mimicking collisionless
-Landau fluid damping
-Braginskii fluid equations + anisotropic transport due to magnetization
-Extended MHD MHD + vestiges of kinetic effects

* Two fluid, Hall MHD, CGL

-MHD

additional assumptions added to
-Incompressible MHD, reduced MHD further simplify MHD



First, a brief review of where Vlasov comes from...

(due to Klimontovich)

dR

dt

positions of velocities of
particles of particles of
species a species a

lim drdv F,,(r,v,t) iseither 10r0
drdv—0

if you know R,;(0) and V,;(0), and can solve
dVO”; q_a )

e%) 1 _
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di Ma |
then you know everything. Done.




“Microphysical” fields computed from Maxwell’s equations

V-B,=0

V-E, :47T2qa/dvaa(r,v,t)
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Rather than evolve R,; and V,; , solve

OF . (r,v,t)/0t = Z(S r — Reai(t))6(v — V(1))



“Microphysical” fields computed from Maxwell’s equations
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Rather than evolve R,; and V,; , solve
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"Klimontovich equation”



An important note
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on Is equivalent to phase-space

ne Vlasov equation, but it is completely different!

With proper initial conditions,
it Is deterministic, not probabillistic.

This makes it cumbersome... but it does torm the basis of
particle-in-cell (PIC) methods and statistical plasma kinetics.

L et’s see the latter...



Ensemble averaging over all microscopic realizations
of the macroscopic plasma (which is equivalent
to a coarse-graining procedure by ergodicity),

0 o 1 0 _
R v-V - (E—I—C’UXB> Jv. falr,v,t) =

o <((5E+ L ><5B> .3Fa>
Me C Ov

LHS = Vlasov equation

RHS = collisions due to discrete nature of particles
~ A= (nAd) T <« 1 the LHS

this Is probabilistic (even more so once the RHS is simplified)



Eulerian (Continuum) vs Lagrangian (PIC)
solve

a o 1 8 _ afa
[(?t o V+m_a (E—I_EUXB) .a_v] fa(r,fv’t) B ( ot >coll

in 6D phase space (“Eulerian™)

or
solve
dRai dvozi o
— Vozz' — E ., Vaz B
d d ma< T Yo X )

for a finite number of (macro)particles (“Lagrangian”)
(f = const on these characteristics)



Macroparticles plus a grid

In the Lagrangian case, you really don’t want to do
particle pairing for ~1010 particles per Debye cloud!

concept of (macro)particles communicating with one another
electromagnetically via a grid; reduction in # of pairings

particle-particle particle-mesh (PIC)
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Lagrangian (Klimontovich/PIC)

* Only 3D grid needed for real space;
Monte-Carlo sampling of velocity space;
means that parallelization is easy and
usually gives good scaling

* Easy to write

* “Unlimited” dynamical range for particle
velocities; no boundary conditions on v

* Difficult to include explicit collisions;
usually not even implemented

* Limited phase-space density resolution

* Errors from finite-size particles (smoothing)

* Load balancing issues

* /N noise! Need lots of particles to capture
phase mixing, collisionless damping, and
small-amplitude fluctuations properly

* Things can go unpredictably wrong




Eulerian (Vlasov-Landau)

 No noise
e (Good control over dissipation;
easier to include collisions
 No issues if plasma very inhnomogeneous

* 6D grid -> extremely expensive; often
results in poor velocity-space resolution
* Difficult to parallelize efticiently

e Velocity space isnt (easily) adaptable, ...




PIC simulations: Some history

PLASMA PHYSICS
VIA COMPUTER
SIMULATION

Dawson’s sheet model (1962): 1000 sheets in 1D;
started late 1950s at Princeton, later @ UCLA

 Hockney, Buneman (1965): introduced grids and
direct Poisson solve

* Finite-size particles and PIC (Dawson et al. 1968;
Birdsall et al. 1968)

e Short-wavelength and high-frequency particle noise
minimized via charge sharing and smoothing
schemes; noise studied by fluctuation-dissipation
theorem (Klimontovich 1967; Langdon 1979; Birdsall
& Langdon 1983; Krommes 1993 for GK PIC)

e 1980s-90s 3D electromagnetic PIC booms;
“PIC bibles” 1988 and 1990




PIC simulation successes

PIC has been enormously successful for modeling large amplitude, kinetic phenomena

Magnetic reconnection (VPIC)
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PIC algorithm [Birdsall and Langdon (1991)]

U iv.Vf+L(E4+YxB) V,f=0
e Solve Vlasov equation along characteristics

v — (E+ v X B), =V e Describes “single” particle evolution in
Lagrangian framework

1 OF A e Each particle is really a super particle,
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PIC simulations: General idea

Weighting

(E,B)j —=Fj

Integration of equations

of motion, moving particles

R R

@)

Weighting
(x,v); —(p, J)J

Integration of field
equations on grid

(E,B)j o-—(p, J)j

note: sometimes fields are subcycled to reduce cost,
but great care must be taken to avoid instability



Step 1: Push Particles
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Step 1: Push Particles

n+1/2 n—1/2
Crank-Nicolson (Buneman 1967): v = Vi ;Vz‘

Vn—|—1/2 o Vn—1/2 Vn—|—1/2 4 Vn—1/2

— t v :Ean I t
At Z( Z) 2

x B"(R})

Boris (1970) algorithm (time-reversible, conserves energy and
phase space volume):

1/2 At makes small phase error
Vit =V -ENRY) S IR
n At
Vit S v B RY)S
+ — + — '
Vz’ _Vi :Vi _|_V’11 XBn(R?)'[ \} v \ U. ! VI |
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can overstep gyromotion without stability issues (just accuracy issues...)



How do we put the particles on the grid?

ly l
LB
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interpolation, with higher orders leading to less noise.
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Step 2: Deposit particles to grid

Simulation particles are not delta functions in real space;
they represent large number of physical particles:
‘macroparticles” or “Lagrangian markers”

Ne (1) = /dv F, = i o(r — Ryi) — Z S(r — Ra.;)

N, N,
Na (T)Ua (1) = /dv vF, = Z Vaid(r — Ryi) — Z Vai S(r — Ry;)
i—1 /
“shape function”

dictates how much phase-space density
IS assigned to a given grid cell



Coulomb force between finite-size particles

Finite-size particles
considerably reduce

Coulomb interactions ~— Point Porticle
Two Dimensions

Ap ® Debye Length
Thermal VelocC:ily
We

inter-particle forces _
inside a cell are B
underestimated,;

collisions must be

re—mtroduped for FIG. 2. Force law between finite-size particles in two dimen-
controlled dissipation sions for various sized particles. A Gaussian-shaped charge-

(I’al’ely done) density profile was used.
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Oth-order particle weighting (nearest neighbor)

I
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| -2 | i+ - |
) (x;) effective particle shape
(b) | /| “interpolation

function”

assigned to whatever cell contains particle
(bad: discontinuous forces)



1st-order particle weighting (cloud-in-cell; CIC)
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effective particle shape

/‘ “Interpolation

SN function”

A S o—

assignment proportional to overlapping volume
(ok: continuous forces, discontinuous derivatives)



What sort of error does the particle shape cause?

Particle shape Force on second particle
'
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2nd-order particle weighting (triangular shaped cloud; TSC)

V.
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Particle shape in practice

In principle, higher-order shape functions can be used,
which result in better spatial filtering of high-frequency
components; but these require a larger stencil,
which means many more accesses of memory

> 2nd-order deposition rarely used

Instead, spatial filtering performed to smooth moments
spectral code: trivially done in k space
grid code: done by “digital filtering” (Hamming 77)



Step 3: Update fields

evolution equations:

8—B — —cV X FE
ot
OFE o
a :CVXB—47T;QQZ.221V@7;S(T‘—R@@')

constraints:

V.-B=0

Na
V-E=41)» qa » S(r— Rai)

o 1=1

broken by truncation error if you're not careful!



Symmetry of Maxwell’s equations suggests leapirog:
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Step 4. Interpolate grid to particles

Interpolation to/from grid must be done in same way,
or else you get self-force

(i,5 + 1, k) (i4+1,5+1,k)
L . ',’
. °
.’;o: ZEr”k (ri 06— Rp)
'," . @ 1,7,k
! @ R
\ @ ZBr”k (rij 06— Rp)
"'. ° N
(2,7, k) (1+1,4,k)

?

Z E(r; k) B(rijk)S(rije— Rp) = E(R,y)- B(R,)

better be...



Stability conditions

| o 1/ 1 1 1\ Y7
Time: Courant—Friedrichs—Lewy (CFL) At < p ((Aw)2 + Ay + (Az)2>

Particles live on a continuous domain, which contains the minimum pos-
sible wavelength to which the particles can respond, k,A\. = 1, but the
grid is discrete and has a lower bound on the wavelength, k.

This means that a particle wave may have phase speed v, = w/k,, but
the grid wave will have v, = w/k,.

For k, > 1/)A., v, > v,, and the particles may be strongly resonant with
the wave, leading to self-heating.

In practice, the plasma heats until the Debye length is resolved.

folv)

w/k, w/Kky w/k, w/k, w/k



P1C numerical heating [TenBarge et al, PoP (2014)]
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Black = continuum, gyrokinetic result
Colors = PIC with different guide field strength (SNR)



Some popular PIC codes

XOOPIC (2D RPIC, free unix version, Mac and Windows are paid through Tech-X);
VORPAL (1,2,3D RPIC, hybrid, sold by Tech-X)

TRISTAN (public serial version), 3D RPIC (also have 2D), becoming public now
(UCLA) 3D RPIC, mainly used for plasma accelerator research

Apar-T, Zeltron.

PIC-on-GPU — open source

LSP -- commercial PIC and hybrid code, used at national labs

VLPL -- laser-plasma code (Pukhov ~2000)

Reconnection research code (UMD, UDelaware)

Every national lab has PIC codes. (VPIC at Los Alamos)

All are tuned for different problems, and sometimes use different formulations (e.g.
vector potential vs fields, etc). Direct comparison is rarely done.



Hands on demonstration using OSIRIS

Please go to: https://jupyter.picksc.org/

bwinjum@ucla.edu



https://jupyter.picksc.org/
mailto:bwinjum@ucla.edu

Gkeyll Simulation Framework



What does a Langmuir wave simulation look like in continuum Vlasa

Let’s look at a continuum Vlasov simulation of
a single Langmuir wave using the Gkeyll
(https://gkyl.readthedocs.io/) simulation code

on/ng = 0.005
(ng,ny) = (32,64),p = 2
Lm — 47T)\D

—10vse < v < 1004

t =000092,
1.005 , =

0.995

%1074

t =0000w,,"

Fourier Transform

of ne




How about the distribution function?
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Concluding thoughts

e PIC is a powerful and efficient tool for exploring collisionless kinetic physics
e As with any tool, it should be applied with care (black boxes are dangerous!)

e Many improvements continue to be made to PIC, e.g., porting to GPUs/heterogenous
architectures, AMR, vectorization, improved sorting and load balancing

e Yet, some problems remain better suited to alternative kinetic approaches, e.g., Eulerian
Vlasov or gyrokinetics

e Especially global simulations, where hybrid kinetic or extended MHD models still rule

Thanks for listening and participating!

Special thanks to
Ben Winjum and Matt Kunz



