

- What happens in weakly collisional plasmas?
- What happens when the cascade reaches kinetic scales?
- What about other dissipation mechanisms?
- How do we diagnose kinetic dissipation?
- What about instabilities?

What happens in weakly collisional plasmas?

What sets the dissipation scale?

Beginnings of kinetic turbulence

Importance of the gyroradius

At collisionless scales, $l < \lambda_{mfp}$ the Alfven wave cascade continues undamped to the scale of the ion gyroradius, $\rho_i = v_{thi}/\Omega_{ci}$ [Schekochihin et al (2009)]

Cascade to the ion gyroradius

Interstellar medium

Black hole accretion disk

Solar wind energy spectrum

Solar wind energy spectrum at 1AU

From Kiyani et al (2015).

What happens when the cascade reaches kinetic

scales?

Kinetic Alfven waves

Landau damping

Multiple cascades [Schekochihin et al (2009)]

From Schekochihin et al (2009)

KAW equations [Schekochihin et al (2009)]

When $k_{\perp}\rho_i \gg 1$

$$\begin{split} \frac{\delta n_e}{n_{0e}} &= -\frac{Ze\varphi}{T_{0i}} = -\frac{2}{\sqrt{\beta_i}} \frac{\Phi}{\rho_i v_A}, \\ u_{\parallel e} &= \frac{c}{4\pi e n_{0e}} \nabla_{\perp}^2 A_{\parallel} = -\frac{\rho_i \nabla_{\perp}^2 \Psi}{\sqrt{\beta_i}}, \qquad u_{\parallel i} = 0, \\ \frac{\delta B_{\parallel}}{B_0} &= \frac{\beta_i}{2} \left(1 + \frac{Z}{\tau}\right) \frac{Ze\varphi}{T_{0i}} = \sqrt{\beta_i} \left(1 + \frac{Z}{\tau}\right) \frac{\Phi}{\rho_i v_A}, = -\frac{\beta_i}{2} \left(1 + \frac{Z}{\tau}\right) \frac{\delta n_e}{n_{0e}} \end{split}$$

$$\frac{\partial \Psi}{\partial t} = v_A \left(1 + \frac{Z}{\tau} \right) \hat{\mathbf{b}} \cdot \nabla \Phi, \qquad \qquad \hat{\mathbf{b}} \cdot \nabla = \partial/\partial z + (1/v_A) \{\Psi, \cdots\}$$
$$\frac{\partial \Phi}{\partial t} = -\frac{v_A}{2 + \beta_i (1 + Z/\tau)} \hat{\mathbf{b}} \cdot \nabla \left(\rho_i^2 \nabla_{\perp}^2 \Psi \right) \qquad \qquad \{\Phi, \Psi\} = \hat{\mathbf{z}} \cdot \left(\nabla_{\perp} \Phi \times \nabla_{\perp} \Psi \right)$$

Eigenfunctions (equivalent to Elsasser fluxes)

$$\Theta_{\mathbf{k}}^{\pm} = \sqrt{\left(1 + \frac{Z}{\tau}\right) \left[2 + \beta_i \left(1 + \frac{Z}{\tau}\right)\right] \frac{\Phi_{\mathbf{k}}}{\rho_i} \mp k_{\perp} \Psi_{\mathbf{k}}}$$

KAW cascade [Schekochihin et al (2009)]

Constant energy flux

$$\frac{(\Psi_{\lambda}/\lambda)^2}{\tau_{\rm KAW\lambda}} \sim \frac{(1+\beta_i)(\Phi_{\lambda}/\rho_i)^2}{\tau_{\rm KAW\lambda}} \sim \varepsilon_{\rm KAW} = {\rm const}$$

KAW cascade [Schekochihin et al (2009)]

$$\Psi_{\lambda} \sim \sqrt{1 + \beta_i} \frac{\lambda}{\rho_i} \Phi_{\lambda} \qquad \qquad \omega_{\mathbf{k}} = \pm \sqrt{\frac{1 + Z/\tau}{2 + \beta_i (1 + Z/\tau)}} \, k_{\perp} \rho_i k_{\parallel} v_A$$

Constant energy flux

$$\frac{(\Psi_{\lambda}/\lambda)^{2}}{\tau_{\mathrm{KAW}\lambda}} \sim \frac{(1+\beta_{i})(\Phi_{\lambda}/\rho_{i})^{2}}{\tau_{\mathrm{KAW}\lambda}} \sim \varepsilon_{\mathrm{KAW}} = \mathrm{const}$$

Critical balance: $\tau_{NL} \sim \tau_{KAW}$

$$au_{\mathrm{KAW}\lambda} \sim rac{\lambda^2}{\Phi_{\lambda}} \sim rac{1}{\sqrt{1+eta_i}} rac{
ho_i}{\lambda} rac{v_A}{l_{\parallel\lambda}}$$

KAW cascade [Schekochihin et al (2009)]

Constant energy flux

 $\frac{(\Psi_{\lambda}/\lambda)^2}{\tau_{\rm KAW\lambda}} \sim \frac{(1+\beta_i)(\Phi_{\lambda}/\rho_i)^2}{\tau_{\rm KAW\lambda}} \sim \varepsilon_{\rm KAW} = {\rm const}$

Critical balance: $\tau_{NL} \sim \tau_{KAW}$

$$au_{\mathrm{KAW}\lambda} \sim rac{\lambda^2}{\Phi_\lambda} \sim rac{1}{\sqrt{1+eta_i}} rac{
ho_i}{\lambda} rac{v_A}{l_{\parallel\lambda}}$$

$$\Phi_{\lambda} \sim \left(\frac{\varepsilon_{\text{KAW}}}{\varepsilon}\right)^{1/3} \frac{v_A}{(1+\beta_i)^{1/3}} l_0^{-1/3} \rho_i^{2/3} \lambda^{2/3} \longrightarrow \begin{array}{c} E_{E_{\perp}} \propto k_{\perp}^{-1/3} \\ E_{B_{\perp}} \propto k_{\perp}^{-7/3} \\ E_{B_{\perp}} \propto k_{\perp}^{-7/3} \end{array}$$

$$l_{\parallel\lambda} \sim \left(\frac{\varepsilon}{\varepsilon_{\text{KAW}}}\right)^{1/3} \frac{l_0^{1/3} \rho_i^{1/3} \lambda^{1/3}}{(1+\beta_i)^{1/6}} \longrightarrow \begin{array}{c} k_{\parallel} \propto k_{\perp}^{1/3} \end{array}$$

Multiple cascades [Schekochihin et al (2009)]

From Schekochihin et al (2009)

Linear phase mixing

 Anisotropic cascade of MHD Alfvén waves transitions to a cascade of kinetic Alfvén waves at the ion Larmor radius.

- Anisotropic cascade of MHD Alfvén waves transitions to a cascade of kinetic Alfvén waves at the ion Larmor radius.
- Dissipation begins at ion kinetic scales in the form wave-particle interactions (Landau, transit-time, cyclotron, ...).

- Anisotropic cascade of MHD Alfvén waves transitions to a cascade of kinetic Alfvén waves at the ion Larmor radius.
- Dissipation begins at ion kinetic scales in the form wave-particle interactions (Landau, transit-time, cyclotron, ...).
- Current sheets also form at ion scales and may be responsible for dissipation.

Shaded contours of j_z together with A_z isolines, and its X points (black crosses) [Servidio et al PRL (2012)].

- Anisotropic cascade of MHD Alfvén waves transitions to a cascade of kinetic Alfvén waves at the ion Larmor radius.
- Dissipation begins at ion kinetic scales in the form wave-particle interactions (Landau, transit-time, cyclotron, ...).
- Current sheets also form at ion scales and may be responsible for dissipation.
- Energy can also dissipate via other mechanisms, such as stochastic heating.

Trajectories of test-particle protons interacting with a spectrum of randomly phased AWs and KAWs for different values of the stochasticity parameter δ [Hoppock et al JPP (2019)].

- Anisotropic cascade of MHD Alfvén waves transitions to a cascade of kinetic Alfvén waves at the ion Larmor radius.
- Dissipation begins at ion kinetic scales in the form wave-particle interactions (Landau, transit-time, cyclotron, ...).
- Current sheets also form at ion scales and may be responsible for dissipation.
- Energy can also dissipate via other mechanisms, such as stochastic heating.
- Which mechanism is dominant in weakly collisional kinetic plasmas, and how do they each heat the plasma?

What about instabilities?

Role of instabilities

Howes Phil Trans A (2015)

Supplemental material

Entropy cascade [Schekochihin et al (2009)]

$$\text{Linear phase mixing:} \quad \frac{\delta v_{\parallel}}{v_{\text{th}i}} \sim \frac{l_{\parallel\lambda}}{v_{\text{th}i}\tau_{h\lambda}} \sim \frac{1}{\sqrt{\beta_i(1+\beta_i)}} \sim 1$$

Nonlinear phase mixing

$$\frac{\delta v_{\perp}}{v_{\text{th}i}} = \frac{|v_{\perp} - v'_{\perp}|}{v_{\text{th}i}} \sim \frac{1}{k_{\perp}\rho_i}$$
$$\tau_{h\lambda} \sim \frac{\rho_i}{\lambda} \tau_{\text{KAW}\lambda} \sim \left(\frac{\varepsilon}{\varepsilon_{\text{KAW}}}\right)^{1/3} (1+\beta_i)^{1/3} \frac{l_0^{1/3} \rho_i^{1/3} \lambda^{1/3}}{v_A}$$
$$h_{i\lambda} \sim \frac{n_{0i}}{v_{\text{th}i}^3} \left(\frac{\varepsilon_h}{\varepsilon}\right)^{1/2} \left(\frac{\varepsilon}{\varepsilon_{\text{KAW}}}\right)^{1/6} \frac{(1+\beta_i)^{1/6}}{\sqrt{\beta_i}} l_0^{-1/3} \rho_i^{1/6} \lambda^{1/6}$$
$$\frac{\delta v_{\perp}}{v_{\text{th}i}} \sim \frac{1}{k_{\perp}\rho_i} \sim (v_{ii}\tau_{\rho_i})^{3/5} = \text{Do}^{-3/5}$$

