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•What happens in weakly collisional plasmas?

•What happens when the cascade reaches kinetic scales?

•What about other dissipation mechanisms?

•How do we diagnose kinetic dissipation?

•What about instabilities?



What happens in weakly collisional plasmas?



Energy Spectrum



MHD energy spectrum

What sets the dissipation scale?



Beginnings of kinetic turbulence
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Importance of the gyroradius
At collisionless scales, l < �mfp the Alfven wave cascade continues
undamped to the scale of the ion gyroradius, �i = vthi/�ci [Schekochihin et al
(2009)]



Cascade to the ion gyroradius
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Interstellar medium
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Black hole accretion disk
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Solar wind energy spectrum
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Solar wind energy spectrum at 1AU

From Kiyani et al (2015).

• Alfvénic inertial range transitions 
into something else at the 
spectral break

•Proposed to be kinetic Alfvén 
waves, magnetosonic whistler 
waves, ion cyclotron waves, or 
current sheets
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Figure 1. Typical trace power spectral density of the magnetic field fluctuations of a βi ∼ O(1) plasma in the ecliptic solar
wind at 1 AU. Dashed lines indicate ordinary least-squares fits, with the corresponding spectral exponents and their fit errors
indicated. This spectrum represents an aggregate of intervals with each smaller interval being containedwithin the subsequent
larger interval—hence the higher frequencies of this spectrum are not representative of the interval describing the lower
frequencies. At the largest scales is a 58 day interval [2007/01/01 00.00–2007/02/28 00.00 UT] from the MFI instrument on
board the ACE spacecraft, illustrating the large-scale forcing range (the so-called f−1 range). The inertial range is computed
from a shorter 51 h interval [2007/01/29 21.00–2007/02/01 00.00 UT] also from the same instrument. Both these datasets are at
1 Hz cadence, so they just begin to touch the beginning of the sub-ion range. The kinetic scale spectrum in the sub-ion scale
range is given by magnetometer data from the FGM and STAFF-SC instruments on the Cluster multi-spacecraft mission, from
spacecraft 4, while it was in the ambient solar wind [2007/01/30 00.10-01.10 UT] and operating in burst mode with a cadence
of 450 Hz—the two signals from both of these instruments have been merged as in [6]. The vertical dashed lines indicate the
three length scalesmentioned above:λc the correlation length,ρi the ion gyro-radius andρe the electron gyro-radius. (Online
version in colour.)

(a) Brief phenomenology of the energy cascade
We ask the reader to turn their attention to figure 1, which shows a canonical power spectral
density at 1 AU in the solar wind. We have chosen the power spectral density as it is not only the
focus of many, if not most, studies of turbulence, but also serves as a simple map to illustrate the
scales of interest in the phenomena. It is also reflective—being the Fourier transform pair—of the
two-point field correlation, another obsession of generations of turbulence researchers. Owing to
the extremely high speed of the solar wind, faster than most temporal dynamics in the system, we
can invoke the ‘Taylor frozen-in flow’ hypothesis to relate temporal scales to spatial scales (see [7]
for caveats to this). Thus, although the abscissa shows a temporal scale of spacecraft frequency,
for most of this spectrum (in the inertial range and above) it can be viewed as a proxy for spatial
scales—some of which are marked at the top of the figure. In particular, we have highlighted four
distinct regions of interest demarcated by three important length scales:

— The f −1 range. At these very small frequencies—corresponding to temporal scales over
many days—what we are actually measuring is the temporal variability of the source of
the solar wind: the Sun and its solar atmosphere. Near the top of this range, we have
the first of our important length scales: the correlation length λc. Below this scale (higher
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What happens when the cascade reaches kinetic 

scales?



Wave modes

From TenBarge et al (2012)

Ion inertial length
di = c/�pi

Ion gyroradius
�i = vthi/�ci



Wave modes

From TenBarge et al (2012)

Ion inertial length
di = c/�pi

Ion gyroradius
�i = vthi/�ci



Kinetic Alfven waves

• At scales l � �i, the ions decouple from the turbulence

• The turbulence is supported by electron motion alone

u⊥ = ue

• Ampere's law: J =
�

s qsnsus = �enue = 4�
c � � B

u⊥ ∝ k⊥B⊥

Alfven Waves
ω = k∥vA

Kinetic Alfven Waves

ω = k∥vAk⊥ρi/
√

βi

Frequency



Landau damping

Kinetic Dissipation
    at l ≤ ρi

Damping Rate



Multiple cascades [Schekochihin et al (2009)]
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Figure 5. Channels of the kinetic cascade of generalized energy (Section 3.4)
from large to small scales: see Section 2.7 and Appendix D.2 (inertial range,
collisional regime), Sections 5.6 and 6.2.5 (inertial range, collisionless regime),
Section 7.8 and Section 7.12 (dissipation range). Note that some ion heating
probably also results from the collisional and collisionless damping of the
compressive fluctuations in the inertial range (see Sections 6.1.2 and 6.2.4).

5.6. Generalized Energy: Three KRMHD Cascades

The generalized energy (Section 3.4) in the limit k⊥ρi ≪ 1 is
calculated by substituting into Equation (109) the perturbed ion
distribution function δfi = 2v⊥ ·uEF0i/v

2
thi +δf̃i (see Equations

(143) and (149)). After performing velocity integration, we get
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= WAW + Wcompr. (153)

We see that the kinetic energy of the Alfvénic fluctuations has
emerged from the ion-entropy part of the generalized energy.
The first two terms in Equation (153) are the total (kinetic plus
magnetic) energy of the Alfvén waves, denoted WAW. As we
learned from Section 5.3, it cascades independently of the rest of
the generalized energy, Wcompr, which contains the compressive
component of the turbulence (Section 5.5) and is the invariant
conserved by Equations (150)–(152).

In terms of the potentials used in our discussion of RMHD in
Section 2, we have

WAW =
∫

d3r
min0i

2

(
|∇⊥Φ|2 + |∇⊥Ψ|2

)

=
∫
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)

= W +
AW + W −

AW (154)

where W +
AW and W −

AW are the energies of the “+” and “− ” waves
(Equation (33)), which, as we know from Section 2.3, cascade
by scattering off each other but without exchanging energy.

Thus, the kinetic cascade in the limit k⊥ρi ≪ 1 is split,
independently of the collisionality, into three cascades: of W +

AW,
W −

AW and Wcompr. The compressive cascade is, in fact, split
into three independent cascades—the splitting is different in the
collisional limit (Appendix D.2) and in the collisionless one
(Section 6.2.5). Figure 5 schematically summarizes both the
splitting of the kinetic cascade that we have worked out so far
and the upcoming developments.

5.7. Summary

In Section 4, gyrokinetics was reduced to a hybrid fluid-
kinetic system by means of an expansion in the electron mass,
which was valid for k⊥ρe ≪ 1. In this section, we have further
restricted the scale range by taking k⊥ρi ≪ 1 and as a result have
been able to achieve a further reduction in the complexity of the
kinetic theory describing the turbulent cascades. The reduced
theory derived here evolves 5 unknown functions: Φ, Ψ, δB∥,
δne and g. The stream and flux functions, Φ and Ψ are related to
the fluid quantities (perpendicular velocity and magnetic field
perturbations) via Equation (16) and to the electromagnetic
potentialsϕ, A∥ via Equation (135). They satisfy a closed system
of equations, Equations (17)–(18), which describe the decoupled
cascade of Alfvén waves. These are the same equations that
arise from the MHD approximations, but we have now proven
that their validity does not depend on the assumption of high
collisionality (the fluid limit) and extends to scales well below
the mean free path, but above the ion gyroscale. The physical
reasons for this are explained in Section 5.4. The density
and magnetic-field-strength fluctuations (the “compressive”
fluctuations, or the slow waves and the entropy mode in the
MHD limit) now require a kinetic description in terms of the
ion distribution function g (or δf̃i , Equation (149)), evolved
by the kinetic Equation (145) (or Equation (150)). The kinetic
equation contains δne and δB∥, which are, in turn calculated in
terms of the velocity-space integrals of g via Equations (146) and
(148) (or Equations (151) and (152)). The nonlinear evolution
(turbulent cascade) of g, δB∥ and δne is due solely to passive
advection of g by the Alfvén-wave turbulence.

Let us summarize the new set of equations:
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where
d

dt
= ∂

∂t
+ {Φ, · · ·} , b̂ · ∇ = ∂

∂z
+

1
vA

{Ψ, · · ·} .

(160)

An explicit form of the collision term in the right-hand side of
Equation (157) is provided in Appendix B.3 (Equation (B18)).

The generalized energy conserved by Equations (155)–(159)
is given by Equation (153). The kinetic cascade is split, the
Alfvénic cascade proceeding independently of the compressive
one (see Figure 5).

From Schekochihin et al (2009)



KAW equations [Schekochihin et al (2009)]
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Figure 8. Numerical solutions of the linear gyrokinetic dispersion relation (for a detailed treatment of the linear theory, see Howes et al. 2006) showing the transition
from the Alfvén wave to KAW between the inertial range (k⊥ρi ≪ 1) and the dissipation range (k⊥ρi ! 1). We show three cases: low beta (βi = 0.01), βi = 1, and
high beta (βi = 100). In all three cases, τ = 1 and Z = 1. Bold solid lines show the real frequency ω, bold dashed lines the damping rate γ , both normalized by k∥vA

(in gyrokinetics, ω/k∥vA and γ /k∥vA are functions of k⊥ only). Dotted lines show the asymptotic KAW solution (230). Horizontal solid line shows the Alfvén wave
ω = k∥vA. Vertical solid lines show k⊥ρi = 1 and k⊥ρe = 1. Note that the damping can be considered strong if the characteristic decay time is comparable or shorter
than the wave period, i.e., γ /ω ! 1/2π . Thus, in these plots, the damping at k⊥ρi ∼ 1 is relatively weak for βi = 1, relatively strong for low beta and very strong for
high beta.

in Section 5 and obtain precisely the same results: Alfvénic
fluctuations described by the RMHD equations and compressive
fluctuations passively advected by them and satisfying the
reduced kinetic equation derived in Section 5.5. Thus, even
though di ≫ ρi at low beta, there is no change in the nature of
the turbulent cascade until k⊥ρi ∼ 1 is reached.

The nonlinear theory of what happens at k⊥ρi ∼ 1 is very
poorly understood. It is, however, possible to make progress by
examining what kind of fluctuations emerge on the other side
of the transition, at k⊥ρi ≫ 1. As we will demonstrate below, it
turns out that another turbulent cascade—this time of KAW—
is possible in this so-called dissipation range. It can transfer
the energy of KAW-like fluctuations down to the electron
gyroscale, where electron Landau damping becomes important
(see Howes et al. 2006). Some observational evidence of KAW
is, indeed, available in the solar wind and the magnetosphere
(Bale et al. 2005; Grison et al. 2005, see further discussion
in Section 8.2.4). Below we derive the equations that describe
KAW-like fluctuations in the scale range k⊥ρi ≫ 1, k⊥ρe ≪ 1
(Section 7.2) and work out a Kolmogorov-style scaling theory
for this cascade (Section 7.5).

Because of the presence of the collisionless damping at the
ion gyroscale, only a certain fraction of the turbulent power
arriving there from the inertial range is converted into the KAW
cascade, while the rest is Landau-damped. The damping leads
to the heating of the ions, but the process of depositing the
collisionlessly damped fluctuation energy into the ion heat is
non-trivial because, as we explained in Section 3.5, collisions
do need to play a role in order for true heating to occur. As
we explained in Section 3.5 and will see specifically for the
dissipation range in Section 7.8, the electromagnetic-fluctuation
energy does not disappear as a result of the Landau damping but
is converted into ion entropy fluctuations, while the generalized
energy is conserved. Collisions are then accessed and ion heating
achieved via a purely kinetic phenomenon: the ion entropy
cascade in phase space (nonlinear phase mixing), for which a
theory is developed in Sections 7.9 and 7.10. A similar process of
conversion of the KAW energy into electron entropy fluctuations
and then electron heat is treated in Section 7.12.

Figure 5 illustrates the routes energy takes from the ion
gyroscale towards heating. Crucially, it is at k⊥ρi ∼ 1 that
it is decided how much energy would eventually go into the

ions and how much into electrons.27 How this distribution
of energy depends on plasma parameters (βi and T0i/T0e) is
an open theoretical question28 of considerable astrophysical
interest: e.g., the efficiency of ion heating is a key unknown
in the theory of advection-dominated accretion flows (Quataert
& Gruzinov 1999, see discussion in Section 8.5) and of the
solar corona (e.g., Cranmer & van Ballegooijen 2003); we will
also see in Section 7.11 that it may determine the form of the
observed dissipation-range spectra in space plasmas.

A short summary of this section is given in Section 7.14.

7.2. Equations of Electron Reduced MHD

The derivation is straightforward: when ai ∼ k⊥ρi ≫ 1,
all Bessel functions in Equations (118)–(120) are small, so the
integrals of the ion distribution function vanish and Equations
(118)–(120) become

δne

n0e

=−Zeϕ

T0i

=− 2√
βi

Φ
ρivA

, (221)

u∥e = c

4πen0e

∇2
⊥A∥ =−ρi∇2

⊥Ψ√
βi

, u∥i = 0, (222)

δB∥

B0
= βi

2

(
1 +

Z

τ

)
Zeϕ

T0i

=
√
βi

(
1 +

Z

τ

)
Φ
ρivA

, (223)

where we used the definitions (135) of the stream and flux
functions Φ and Ψ.

These equations are a reflection of the fact that, for k⊥ρi ≫ 1,
the ion response is effectively purely Boltzmann, with the
gyrokinetic part hi contributing nothing to the fields or flows
(see Equation (54) with hi omitted; hi does, however, play
an important role in the energy balance and ion heating, as
explained in Sections 7.8–7.10 below). The Boltzmann response
for ion density is expressed by Equation (221). Equation (222)

27 Some of the energy of compressive fluctuations may go into ion heat via
collisional (Section 6.1.2) or collisionless (Section 6.2.2) damping of these
fluctuations in the inertial range. Whether this is a significant ion heating
mechanism depends on the efficiency of the parallel cascade (see
Sections 6.2.4 and 6.3).
28 How much energy is converted into ion entropy fluctuations in the process
of a nonlinear turbulent cascade is not necessarily directly related to the
strength of the linear collisionless damping.
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB∥

4π
= − δpi − δpe = − T0iδni − T0eδne, (224)

it follows that

δB∥

B0
= − βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥ Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write
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which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations
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Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).
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Figure 8. Numerical solutions of the linear gyrokinetic dispersion relation (for a detailed treatment of the linear theory, see Howes et al. 2006) showing the transition
from the Alfvén wave to KAW between the inertial range (k⊥ρi ≪ 1) and the dissipation range (k⊥ρi ! 1). We show three cases: low beta (βi = 0.01), βi = 1, and
high beta (βi = 100). In all three cases, τ = 1 and Z = 1. Bold solid lines show the real frequency ω, bold dashed lines the damping rate γ , both normalized by k∥vA

(in gyrokinetics, ω/k∥vA and γ /k∥vA are functions of k⊥ only). Dotted lines show the asymptotic KAW solution (230). Horizontal solid line shows the Alfvén wave
ω = k∥vA. Vertical solid lines show k⊥ρi = 1 and k⊥ρe = 1. Note that the damping can be considered strong if the characteristic decay time is comparable or shorter
than the wave period, i.e., γ /ω ! 1/2π . Thus, in these plots, the damping at k⊥ρi ∼ 1 is relatively weak for βi = 1, relatively strong for low beta and very strong for
high beta.

in Section 5 and obtain precisely the same results: Alfvénic
fluctuations described by the RMHD equations and compressive
fluctuations passively advected by them and satisfying the
reduced kinetic equation derived in Section 5.5. Thus, even
though di ≫ ρi at low beta, there is no change in the nature of
the turbulent cascade until k⊥ρi ∼ 1 is reached.

The nonlinear theory of what happens at k⊥ρi ∼ 1 is very
poorly understood. It is, however, possible to make progress by
examining what kind of fluctuations emerge on the other side
of the transition, at k⊥ρi ≫ 1. As we will demonstrate below, it
turns out that another turbulent cascade—this time of KAW—
is possible in this so-called dissipation range. It can transfer
the energy of KAW-like fluctuations down to the electron
gyroscale, where electron Landau damping becomes important
(see Howes et al. 2006). Some observational evidence of KAW
is, indeed, available in the solar wind and the magnetosphere
(Bale et al. 2005; Grison et al. 2005, see further discussion
in Section 8.2.4). Below we derive the equations that describe
KAW-like fluctuations in the scale range k⊥ρi ≫ 1, k⊥ρe ≪ 1
(Section 7.2) and work out a Kolmogorov-style scaling theory
for this cascade (Section 7.5).

Because of the presence of the collisionless damping at the
ion gyroscale, only a certain fraction of the turbulent power
arriving there from the inertial range is converted into the KAW
cascade, while the rest is Landau-damped. The damping leads
to the heating of the ions, but the process of depositing the
collisionlessly damped fluctuation energy into the ion heat is
non-trivial because, as we explained in Section 3.5, collisions
do need to play a role in order for true heating to occur. As
we explained in Section 3.5 and will see specifically for the
dissipation range in Section 7.8, the electromagnetic-fluctuation
energy does not disappear as a result of the Landau damping but
is converted into ion entropy fluctuations, while the generalized
energy is conserved. Collisions are then accessed and ion heating
achieved via a purely kinetic phenomenon: the ion entropy
cascade in phase space (nonlinear phase mixing), for which a
theory is developed in Sections 7.9 and 7.10. A similar process of
conversion of the KAW energy into electron entropy fluctuations
and then electron heat is treated in Section 7.12.

Figure 5 illustrates the routes energy takes from the ion
gyroscale towards heating. Crucially, it is at k⊥ρi ∼ 1 that
it is decided how much energy would eventually go into the

ions and how much into electrons.27 How this distribution
of energy depends on plasma parameters (βi and T0i/T0e) is
an open theoretical question28 of considerable astrophysical
interest: e.g., the efficiency of ion heating is a key unknown
in the theory of advection-dominated accretion flows (Quataert
& Gruzinov 1999, see discussion in Section 8.5) and of the
solar corona (e.g., Cranmer & van Ballegooijen 2003); we will
also see in Section 7.11 that it may determine the form of the
observed dissipation-range spectra in space plasmas.

A short summary of this section is given in Section 7.14.

7.2. Equations of Electron Reduced MHD

The derivation is straightforward: when ai ∼ k⊥ρi ≫ 1,
all Bessel functions in Equations (118)–(120) are small, so the
integrals of the ion distribution function vanish and Equations
(118)–(120) become

δne

n0e

=−Zeϕ

T0i

=− 2√
βi

Φ
ρivA

, (221)

u∥e = c

4πen0e

∇2
⊥A∥ =−ρi∇2

⊥Ψ√
βi

, u∥i = 0, (222)

δB∥

B0
= βi

2

(
1 +

Z

τ

)
Zeϕ

T0i

=
√
βi

(
1 +

Z

τ

)
Φ
ρivA

, (223)

where we used the definitions (135) of the stream and flux
functions Φ and Ψ.

These equations are a reflection of the fact that, for k⊥ρi ≫ 1,
the ion response is effectively purely Boltzmann, with the
gyrokinetic part hi contributing nothing to the fields or flows
(see Equation (54) with hi omitted; hi does, however, play
an important role in the energy balance and ion heating, as
explained in Sections 7.8–7.10 below). The Boltzmann response
for ion density is expressed by Equation (221). Equation (222)

27 Some of the energy of compressive fluctuations may go into ion heat via
collisional (Section 6.1.2) or collisionless (Section 6.2.2) damping of these
fluctuations in the inertial range. Whether this is a significant ion heating
mechanism depends on the efficiency of the parallel cascade (see
Sections 6.2.4 and 6.3).
28 How much energy is converted into ion entropy fluctuations in the process
of a nonlinear turbulent cascade is not necessarily directly related to the
strength of the linear collisionless damping.

When
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:

E⊥k = − ik⊥ϕ +
iωk

c
A⊥k

=
[
−ik⊥ + ẑ× k⊥

ωk

Ωi

βi

k2
⊥ρ

2
i

(
1 +

Z

τ

)]
ϕ (233)

(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)

{Ψ, ρ2
i ∇2

⊥Ψ} = 0 ⇒ ρ2
i ∇2

⊥Ψ = c2Ψ, (235)

where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29

c2
1 = − 1

c2

(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
, (236)

so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
interact.30

7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
1996, 1999; Ghosh et al. 1996; Ng et al. 2003; Cho & Lazarian
2004; Shaikh & Zank 2005) have revealed that the spectrum of
magnetic fluctuations scales as k

−7/3
⊥ , the outcome consistent

with the assumptions stated above. Let us outline the argument
that leads to this scaling.

First assume that the fluctuations are KAW-like and that Θ+

and Θ− (Equation (231)) have similar scaling. This implies

Ψλ ∼
√

1 + βi

λ

ρi

Φλ (237)

(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),

(Ψλ/λ)2

τKAWλ

∼ (1 + βi)(Φλ/ρi)2

τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB∥

4π
= − δpi − δpe = − T0iδni − T0eδne, (224)

it follows that

δB∥

B0
= − βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥ Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).

Eigenfunctions (equivalent to Elsasser fluxes)
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where ρ is the mass density, u velocity, p pressure, B magnetic
field, s the entropy density, and d/dt = ∂/∂t + u · ∇ (the
conditions under which these equations are valid are discussed
in Appendix A). Consider a uniform static equilibrium with a
straight mean field in the z direction, so

ρ = ρ0 + δρ, p = p0 + δp, B = B0ẑ + δB, (11)

where ρ0, p0, and B0 are constants. In what follows, the
subscripts ∥ and ⊥ will be used to denote the projections of
fields, variables and gradients on the mean-field direction ẑ and
onto the plane (x, y) perpendicular to this direction, respectively.

2.1. RMHD Ordering

As we explained in the Introduction, observational and
numerical evidence makes it safe to assume that the turbulence
in such a system will be anisotropic with k∥ ≪ k⊥ (at scales
smaller than the outer scale, k∥L ≫ 1; see Sections 1.3 and
1.5.1). Let us, therefore, introduce a small parameter ϵ ∼k∥/k⊥
and carry out a systematic expansion of Equations (7)–(10) in
ϵ. In this expansion, the fluctuations are treated as small, but
not arbitrarily so: in order to estimate their size, we shall adopt
the critical-balance conjecture (3), which is now treated not as
a detailed scaling prescription but as an ordering assumption.
This allows us to introduce the following ordering:

δρ

ρ0
∼ u⊥

vA

∼ u∥

vA

∼ δp

p0
∼ δB⊥

B0
∼ δB∥

B0
∼ k∥

k⊥
∼ϵ, (12)

where vA = B0/
√

4πρ0 is the Alfvén speed. Note that this
means that we order the Mach number

M ∼ u

cs

∼ ϵ√
βi

, (13)

where cs = (γp0/ρ0)1/2 is the speed of sound and

β = 8πp0

B2
0

= 2
γ

c2
s

v2
A

(14)

is the plasma beta, which is ordered to be order unity in the
ϵ expansion (subsidiary limits of high and low β can be taken
after the ϵ expansion is done; see Section 2.4).

In Equation (12), we made two auxiliary ordering as-
sumptions: that the velocity and magnetic-field fluctuations
have the character of Alfvén and slow waves (δB⊥ /B0 ∼
u⊥ /vA, δB∥/B0 ∼ u∥/vA) and that the relative amplitudes
of the Alfvén-wave-polarized fluctuations (δB⊥ /B0, u⊥ /vA),
slow-wave-polarized fluctuations (δB∥/B0, u∥/vA) and den-
sity/pressure/entropy fluctuations (δρ/ρ0, δp/p0) are all the
same order. Strictly speaking, whether this is the case depends
on the energy sources that drive the turbulence: as we shall see, if
no slow waves (or entropy fluctuations) are launched, none will
be present. However, in astrophysical contexts, the outer-scale
energy input may be assumed random and, therefore, compara-
ble power is injected into all types of fluctuations.

We further assume that the characteristic frequency of the
fluctuations is ω ∼ k∥vA (Equation (3)), meaning that the fast
waves, for which ω ≃ k⊥ (v2

A + c2
s )1/2, are ordered out. This

restriction must be justified empirically. Observations of the
solar-wind turbulence confirm that it is primarily Alfvénic (see,
e.g., Bale et al. 2005) and that its compressive component is sub-
stantially pressure-balanced (Roberts 1990; Burlaga et al. 1990;

Marsch & Tu 1993; Bavassano et al. 2004, see Equation (22)
below). A weak-turbulence calculation of compressible MHD
turbulence in low-beta plasmas (Chandran 2005b) suggests that
only a small amount of energy is transferred from the fast waves
to Alfvén waves with large k∥. A similar conclusion emerges
from numerical simulations (Cho & Lazarian 2002, 2003). As
the fast waves are also expected to be subject to strong colli-
sionless damping and/or to strong dissipation after they steepen
into shocks, we eliminate them from our consideration of the
problem and concentrate on low-frequency turbulence.

2.2. Alfvén Waves

We start by observing that the Alfvén-wave-polarized fluc-
tuations are two-dimensionally solenoidal: since, from Equa-
tion (7),

∇ · u = − d

dt

δρ

ρ0
= O(ϵ2) (15)

and ∇ · δB = 0 exactly, separating the O(ϵ) part of these
divergences gives ∇⊥ · u⊥ = 0 and ∇⊥ · δB⊥ = 0. To lowest
order in the ϵ expansion, we may, therefore, express u⊥ and δB⊥
in terms of scalar stream (flux) functions:

u⊥ = ẑ×∇⊥ Φ,
δB⊥√
4πρ0

= ẑ×∇⊥ Ψ. (16)

Evolution equations for Φ and Ψ are obtained by substituting
the expressions (16) into the perpendicular parts of the induction
Equation (10) and the momentum Equation (8)—of the latter the
curl is taken to annihilate the pressure term. Keeping only the
terms of the lowest order, O(ϵ2), we get

∂Ψ
∂t

+ {Φ, Ψ} = vA

∂Φ
∂z

, (17)

∂

∂t
∇2
⊥ Φ +

{
Φ,∇2

⊥ Φ
}

= vA

∂

∂z
∇2
⊥ Ψ +

{
Ψ,∇2

⊥ Ψ
}
, (18)

where {Φ, Ψ} = ẑ · (∇⊥ Φ × ∇⊥ Ψ) and we have taken into
account that, to lowest order,

d

dt
= ∂

∂t
+ u⊥ · ∇⊥ = ∂

∂t
+ {Φ, · · ·} , (19)

b̂ · ∇ = ∂

∂z
+
δB⊥
B0

· ∇⊥ = ∂

∂z
+

1
vA

{Ψ, · · ·} . (20)

Here b̂ = B/B0 is the unit vector along the perturbed field line.
Equations (17)–(18) are known as the reduced magnetohydro-

dynamics (RMHD). The first derivations of these equations (in
the context of fusion plasmas) are due to Kadomtsev & Pogutse
(1974) and to Strauss (1976). These were followed by many sys-
tematic derivations and generalizations employing various ver-
sions and refinements of the basic expansion, taking into account
the non-Alfvénic modes (which we will do in Section 2.4), and
including the effects of spatial gradients of equilibrium fields
(e.g., Strauss 1977; Montgomery 1982; Hazeltine 1983; Zank
& Matthaeus 1992; Kinney & McWilliams 1997; Bhattacharjee
et al. 1998; Kruger et al. 1998). A comparative review of these
expansion schemes and their (often close) relationship to ours
is outside the scope of this paper. One important point we wish
to emphasize is that we do not assume the plasma beta (defined
in Equation (14)) to be either large or small.

Equations (17) and (18) form a closed set, meaning that
the Alfvén-wave cascade decouples from the slow waves
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:

E⊥k = − ik⊥ϕ +
iωk

c
A⊥k

=
[
−ik⊥ + ẑ× k⊥

ωk

Ωi

βi

k2
⊥ρ

2
i

(
1 +

Z

τ

)]
ϕ (233)

(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)

{Ψ, ρ2
i ∇2

⊥Ψ} = 0 ⇒ ρ2
i ∇2

⊥Ψ = c2Ψ, (235)

where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29

c2
1 = − 1

c2

(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
, (236)

so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
interact.30

7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
1996, 1999; Ghosh et al. 1996; Ng et al. 2003; Cho & Lazarian
2004; Shaikh & Zank 2005) have revealed that the spectrum of
magnetic fluctuations scales as k

−7/3
⊥ , the outcome consistent

with the assumptions stated above. Let us outline the argument
that leads to this scaling.

First assume that the fluctuations are KAW-like and that Θ+

and Θ− (Equation (231)) have similar scaling. This implies

Ψλ ∼
√

1 + βi

λ

ρi

Φλ (237)

(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),

(Ψλ/λ)2

τKAWλ

∼ (1 + βi)(Φλ/ρi)2

τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:
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(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).
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turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
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so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
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i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.
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A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
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(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),
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τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).

Constant energy flux

No. 1, 2009 KINETIC TURBULENCE IN MAGNETIZED PLASMAS 341

states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB∥

4π
= − δpi − δpe = − T0iδni − T0eδne, (224)

it follows that

δB∥

B0
= − βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥ Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:
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(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)
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where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29
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so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
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7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
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theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
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and Θ− (Equation (231)) have similar scaling. This implies
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(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),
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where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
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λ2/Φλ. If the turbulence is strong, then this time is comparable
to the inverse KAW frequency (Equation (230)) scale by scale
and we may assume the cascade time is comparable to either:

τKAWλ ∼
λ2

Φλ

∼ 1√
1 + βi

ρi

λ

vA

l∥λ
. (239)

In other words, this says that ∂/∂z ∼ (δB⊥ /B0) · ∇⊥ and so
δB⊥ λ/B0 ∼ λ/l∥λ (note that the last relation confirms that our
scaling arguments do not violate the gyrokinetic ordering; see
Sections 2.1 and 3.1). Equation (239) is the critical-balance
assumption for KAW. As in the case of the Alfvén waves
(Section 1.2), we might argue physically that the critical balance
is set up because the parallel correlation length l∥λ is determined
by the condition that a wave can propagate the distance l∥λ in one
nonlinear decorrelation time corresponding to the perpendicular
correlation length λ.

Combining Equations (238) and (239), we get the desired
scaling relations for the KAW turbulence:

Φλ ∼
(εKAW

ε

)1/3 vA

(1 + βi)1/3
l
−1/3
0 ρ

2/3
i λ2/3, (240)

l∥λ ∼
(

ε

εKAW

)1/3 l
1/3
0 ρ

1/3
i λ1/3

(1 + βi)1/6
, (241)

where l0 = v3
A/ε, as in Section 1.2. The first of these scaling

relations is equivalent to a k
−7/3
⊥ spectrum of magnetic energy,

the second quantifies the anisotropy (which is stronger than
for the GS turbulence). Both scalings were confirmed in the
numerical simulations of Cho & Lazarian (2004)—it is their
detection of the scaling (241) that makes a particularly strong
case that KAW turbulence is not weak and that the critical
balance hypothesis applies.

For KAW-like fluctuations, the density (Equation (221)) and
magnetic field (Equations (223) and (231)) have the same
spectrum as the scalar potential, i.e., k

−7/3
⊥ , while the electric

field E ∼ k⊥ ϕ has a k
−1/3
⊥ spectrum. The solar-wind fluctuation

spectra reported by Bale et al. (2005) indeed are consistent
with a transition to KAW turbulence around the ion gyroscale:
k−5/3 magnetic and electric-field power spectra at kρi ≪ 1
are replaced, for kρi ! 1, with what appears to be consistent
with a k−7/3 scaling for the magnetic-field spectrum and a
k−1/3 for the electric one (see Figure 1). A similar result is
recovered in fully gyrokinetic simulations with βi = 1, τ = 1
(Howes et al. 2008b). However, not all solar-wind observations
are quite as straightforwardly supportive of the notion of the
KAW cascade and much steeper magnetic-fluctuation spectra
have also been reported (e.g., Denskat et al. 1983; Leamon et al.
1998; Smith et al. 2006). Possible reasons for this will emerge
in Sections 7.6 and 7.11 and the solar-wind data are further
discussed in Sections 8.2.4 and 8.2.5.

7.6. Validity of the Electron RMHD and the Effect of Electron
Landau Damping

The ERMHD equations derived in Section 7 are valid pro-
vided k⊥ ρi ≫ 1 and also provided it is sufficient to use the
leading order in the mass-ratio expansion (isothermal electrons;
see Section 4). In particular, this means that the electron Lan-
dau damping is neglected. Asymptotically speaking, this is a
rigorous limit, but one must be cautious in applying it to real

plasmas. Since the width of the scale range where k⊥ ρi ≫ 1
and k⊥ ρe ≪ 1 is only ∼ (mi/me)1/2 ≃ 43, for some val-
ues of the plasma parameters (T0i/T0e and βi) there may not
be a very broad interval of scales where the electron Lan-
dau damping is truly negligible. Consider, for example, the
low-beta limit, βi ≪ 1. In this limit, the KAW frequency is
ω ∼ k⊥ ρik∥vA (Equation (230)). The electron Landau damping
becomes important when ω ∼ k∥vthe, or k⊥ ρe ∼

√
βi ≪ 1,

so the ERMHD approximation breaks down and, consequently,
the KAW cascade, if any, should be interrupted well before
the electron gyroscale is reached. Figure 8 shows the solu-
tion of the full gyrokinetic dispersion relation (Howes et al.
2006) for small, unity and large βi . One can judge for which
scales and how well (or how badly) the ERMHD approximation
holds from the precision with which the exact frequency follows
the asymptotic solution Equation (230) and from the relative
strength of the damping compared to the real frequency of the
waves.

Non-negligible electron Landau damping may affect turbu-
lence spectra because one can no longer assume a constant
flux of KAW energy as we did in Section 7.5. To evaluate the
consequences of this effect, Howes et al. (2008a) constructed
a simple model of spectral energy transfer and concluded that
Landau damping leads to steepening of the KAW spectra—one
of several possible reasons for steep dissipation-range spectra
observed in space plasmas (see also Section 7.11).

7.7. Unfreezing of Flux

As ERMHD is a limit of the isothermal-electron-fluid system
(Section 4), the magnetic-field lines remain unbroken (see
Section 4.3). Within the orderings employed above (small mass
ratio, νii ∼ ω, βi ∼ 1, τ ∼ 1), the flux unfreezes only in the
vicinity of the electron gyroscale. It is interesting to evaluate
somewhat more precisely the scale at which this happens as a
function of plasma parameters.

Physically, there are three kinds of mechanisms by which the
flux conservation is broken: electron inertia, the effects of finite
electron gyroradius, and Ohmic resistivity. Let us take the v∥
moment of the electron gyrokinetic equation (Equation (57),
s = e, integration at constant r) and use Equation (222)
to evaluate the inertial term in the resulting parallel electron
momentum equation:

cme

e

∂u∥e

∂t
= ∂

∂t
d2

e∇2
⊥ A∥, (242)

where de = ρe/
√
βe is the electron inertial scale and βe =

Zβi/τ . Comparing this with the ∂A∥/∂t term in the right-
hand side of the electron momentum equation, we see that the
electron inertia becomes important when k⊥ ρe ∼

√
βe. The

finite-gyroradius effects enter when k⊥ ρe ∼ 1. Thus, at low
βe, the electron inertia becomes important above the electron
gyroscale, whereas at high βe, the finite-gyroradius effects enter
first. Finally, the Ohmic resistivity comes from the collision term
(see Appendix B.4):

cme

e

1
n0e

∫
d3v v∥

(
∂he

∂t

)

c
∼ cme

e
νeiu∥e ∼ νeik

2
⊥ d2

e A∥.

(243)
Thus, resistivity starts to act when k⊥ de ∼ (ω/νei)1/2. Using the
KAW frequency (Equation (230)) to estimate ω and assuming
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:

E⊥k = − ik⊥ϕ +
iωk

c
A⊥k

=
[
−ik⊥ + ẑ× k⊥

ωk

Ωi

βi

k2
⊥ρ

2
i

(
1 +

Z

τ

)]
ϕ (233)

(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)

{Ψ, ρ2
i ∇2

⊥Ψ} = 0 ⇒ ρ2
i ∇2

⊥Ψ = c2Ψ, (235)

where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29

c2
1 = − 1

c2

(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
, (236)

so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
interact.30

7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
1996, 1999; Ghosh et al. 1996; Ng et al. 2003; Cho & Lazarian
2004; Shaikh & Zank 2005) have revealed that the spectrum of
magnetic fluctuations scales as k

−7/3
⊥ , the outcome consistent

with the assumptions stated above. Let us outline the argument
that leads to this scaling.

First assume that the fluctuations are KAW-like and that Θ+

and Θ− (Equation (231)) have similar scaling. This implies

Ψλ ∼
√

1 + βi

λ

ρi

Φλ (237)

(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),

(Ψλ/λ)2

τKAWλ

∼ (1 + βi)(Φλ/ρi)2

τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB∥

4π
= − δpi − δpe = − T0iδni − T0eδne, (224)

it follows that

δB∥

B0
= − βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥ Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:

E⊥k = − ik⊥ϕ +
iωk

c
A⊥k

=
[
−ik⊥ + ẑ× k⊥

ωk

Ωi

βi

k2
⊥ρ

2
i

(
1 +

Z

τ

)]
ϕ (233)

(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)

{Ψ, ρ2
i ∇2

⊥Ψ} = 0 ⇒ ρ2
i ∇2

⊥Ψ = c2Ψ, (235)

where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29

c2
1 = − 1

c2

(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
, (236)

so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
interact.30

7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
1996, 1999; Ghosh et al. 1996; Ng et al. 2003; Cho & Lazarian
2004; Shaikh & Zank 2005) have revealed that the spectrum of
magnetic fluctuations scales as k

−7/3
⊥ , the outcome consistent

with the assumptions stated above. Let us outline the argument
that leads to this scaling.

First assume that the fluctuations are KAW-like and that Θ+

and Θ− (Equation (231)) have similar scaling. This implies

Ψλ ∼
√

1 + βi

λ

ρi

Φλ (237)

(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),

(Ψλ/λ)2

τKAWλ

∼ (1 + βi)(Φλ/ρi)2

τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).
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λ2/Φλ. If the turbulence is strong, then this time is comparable
to the inverse KAW frequency (Equation (230)) scale by scale
and we may assume the cascade time is comparable to either:

τKAWλ ∼
λ2

Φλ

∼ 1√
1 + βi

ρi

λ

vA

l∥λ
. (239)

In other words, this says that ∂/∂z ∼ (δB⊥ /B0) · ∇⊥ and so
δB⊥ λ/B0 ∼ λ/l∥λ (note that the last relation confirms that our
scaling arguments do not violate the gyrokinetic ordering; see
Sections 2.1 and 3.1). Equation (239) is the critical-balance
assumption for KAW. As in the case of the Alfvén waves
(Section 1.2), we might argue physically that the critical balance
is set up because the parallel correlation length l∥λ is determined
by the condition that a wave can propagate the distance l∥λ in one
nonlinear decorrelation time corresponding to the perpendicular
correlation length λ.

Combining Equations (238) and (239), we get the desired
scaling relations for the KAW turbulence:
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where l0 = v3
A/ε, as in Section 1.2. The first of these scaling

relations is equivalent to a k
−7/3
⊥ spectrum of magnetic energy,

the second quantifies the anisotropy (which is stronger than
for the GS turbulence). Both scalings were confirmed in the
numerical simulations of Cho & Lazarian (2004)—it is their
detection of the scaling (241) that makes a particularly strong
case that KAW turbulence is not weak and that the critical
balance hypothesis applies.

For KAW-like fluctuations, the density (Equation (221)) and
magnetic field (Equations (223) and (231)) have the same
spectrum as the scalar potential, i.e., k

−7/3
⊥ , while the electric

field E ∼ k⊥ ϕ has a k
−1/3
⊥ spectrum. The solar-wind fluctuation

spectra reported by Bale et al. (2005) indeed are consistent
with a transition to KAW turbulence around the ion gyroscale:
k−5/3 magnetic and electric-field power spectra at kρi ≪ 1
are replaced, for kρi ! 1, with what appears to be consistent
with a k−7/3 scaling for the magnetic-field spectrum and a
k−1/3 for the electric one (see Figure 1). A similar result is
recovered in fully gyrokinetic simulations with βi = 1, τ = 1
(Howes et al. 2008b). However, not all solar-wind observations
are quite as straightforwardly supportive of the notion of the
KAW cascade and much steeper magnetic-fluctuation spectra
have also been reported (e.g., Denskat et al. 1983; Leamon et al.
1998; Smith et al. 2006). Possible reasons for this will emerge
in Sections 7.6 and 7.11 and the solar-wind data are further
discussed in Sections 8.2.4 and 8.2.5.

7.6. Validity of the Electron RMHD and the Effect of Electron
Landau Damping

The ERMHD equations derived in Section 7 are valid pro-
vided k⊥ ρi ≫ 1 and also provided it is sufficient to use the
leading order in the mass-ratio expansion (isothermal electrons;
see Section 4). In particular, this means that the electron Lan-
dau damping is neglected. Asymptotically speaking, this is a
rigorous limit, but one must be cautious in applying it to real

plasmas. Since the width of the scale range where k⊥ ρi ≫ 1
and k⊥ ρe ≪ 1 is only ∼ (mi/me)1/2 ≃ 43, for some val-
ues of the plasma parameters (T0i/T0e and βi) there may not
be a very broad interval of scales where the electron Lan-
dau damping is truly negligible. Consider, for example, the
low-beta limit, βi ≪ 1. In this limit, the KAW frequency is
ω ∼ k⊥ ρik∥vA (Equation (230)). The electron Landau damping
becomes important when ω ∼ k∥vthe, or k⊥ ρe ∼

√
βi ≪ 1,

so the ERMHD approximation breaks down and, consequently,
the KAW cascade, if any, should be interrupted well before
the electron gyroscale is reached. Figure 8 shows the solu-
tion of the full gyrokinetic dispersion relation (Howes et al.
2006) for small, unity and large βi . One can judge for which
scales and how well (or how badly) the ERMHD approximation
holds from the precision with which the exact frequency follows
the asymptotic solution Equation (230) and from the relative
strength of the damping compared to the real frequency of the
waves.

Non-negligible electron Landau damping may affect turbu-
lence spectra because one can no longer assume a constant
flux of KAW energy as we did in Section 7.5. To evaluate the
consequences of this effect, Howes et al. (2008a) constructed
a simple model of spectral energy transfer and concluded that
Landau damping leads to steepening of the KAW spectra—one
of several possible reasons for steep dissipation-range spectra
observed in space plasmas (see also Section 7.11).

7.7. Unfreezing of Flux

As ERMHD is a limit of the isothermal-electron-fluid system
(Section 4), the magnetic-field lines remain unbroken (see
Section 4.3). Within the orderings employed above (small mass
ratio, νii ∼ ω, βi ∼ 1, τ ∼ 1), the flux unfreezes only in the
vicinity of the electron gyroscale. It is interesting to evaluate
somewhat more precisely the scale at which this happens as a
function of plasma parameters.

Physically, there are three kinds of mechanisms by which the
flux conservation is broken: electron inertia, the effects of finite
electron gyroradius, and Ohmic resistivity. Let us take the v∥
moment of the electron gyrokinetic equation (Equation (57),
s = e, integration at constant r) and use Equation (222)
to evaluate the inertial term in the resulting parallel electron
momentum equation:
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where de = ρe/
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βe is the electron inertial scale and βe =

Zβi/τ . Comparing this with the ∂A∥/∂t term in the right-
hand side of the electron momentum equation, we see that the
electron inertia becomes important when k⊥ ρe ∼

√
βe. The

finite-gyroradius effects enter when k⊥ ρe ∼ 1. Thus, at low
βe, the electron inertia becomes important above the electron
gyroscale, whereas at high βe, the finite-gyroradius effects enter
first. Finally, the Ohmic resistivity comes from the collision term
(see Appendix B.4):
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Thus, resistivity starts to act when k⊥ de ∼ (ω/νei)1/2. Using the
KAW frequency (Equation (230)) to estimate ω and assuming
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λ2/Φλ. If the turbulence is strong, then this time is comparable
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and we may assume the cascade time is comparable to either:
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is set up because the parallel correlation length l∥λ is determined
by the condition that a wave can propagate the distance l∥λ in one
nonlinear decorrelation time corresponding to the perpendicular
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⊥ spectrum of magnetic energy,

the second quantifies the anisotropy (which is stronger than
for the GS turbulence). Both scalings were confirmed in the
numerical simulations of Cho & Lazarian (2004)—it is their
detection of the scaling (241) that makes a particularly strong
case that KAW turbulence is not weak and that the critical
balance hypothesis applies.

For KAW-like fluctuations, the density (Equation (221)) and
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with a transition to KAW turbulence around the ion gyroscale:
k−5/3 magnetic and electric-field power spectra at kρi ≪ 1
are replaced, for kρi ! 1, with what appears to be consistent
with a k−7/3 scaling for the magnetic-field spectrum and a
k−1/3 for the electric one (see Figure 1). A similar result is
recovered in fully gyrokinetic simulations with βi = 1, τ = 1
(Howes et al. 2008b). However, not all solar-wind observations
are quite as straightforwardly supportive of the notion of the
KAW cascade and much steeper magnetic-fluctuation spectra
have also been reported (e.g., Denskat et al. 1983; Leamon et al.
1998; Smith et al. 2006). Possible reasons for this will emerge
in Sections 7.6 and 7.11 and the solar-wind data are further
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The ERMHD equations derived in Section 7 are valid pro-
vided k⊥ ρi ≫ 1 and also provided it is sufficient to use the
leading order in the mass-ratio expansion (isothermal electrons;
see Section 4). In particular, this means that the electron Lan-
dau damping is neglected. Asymptotically speaking, this is a
rigorous limit, but one must be cautious in applying it to real

plasmas. Since the width of the scale range where k⊥ ρi ≫ 1
and k⊥ ρe ≪ 1 is only ∼ (mi/me)1/2 ≃ 43, for some val-
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be a very broad interval of scales where the electron Lan-
dau damping is truly negligible. Consider, for example, the
low-beta limit, βi ≪ 1. In this limit, the KAW frequency is
ω ∼ k⊥ ρik∥vA (Equation (230)). The electron Landau damping
becomes important when ω ∼ k∥vthe, or k⊥ ρe ∼
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so the ERMHD approximation breaks down and, consequently,
the KAW cascade, if any, should be interrupted well before
the electron gyroscale is reached. Figure 8 shows the solu-
tion of the full gyrokinetic dispersion relation (Howes et al.
2006) for small, unity and large βi . One can judge for which
scales and how well (or how badly) the ERMHD approximation
holds from the precision with which the exact frequency follows
the asymptotic solution Equation (230) and from the relative
strength of the damping compared to the real frequency of the
waves.

Non-negligible electron Landau damping may affect turbu-
lence spectra because one can no longer assume a constant
flux of KAW energy as we did in Section 7.5. To evaluate the
consequences of this effect, Howes et al. (2008a) constructed
a simple model of spectral energy transfer and concluded that
Landau damping leads to steepening of the KAW spectra—one
of several possible reasons for steep dissipation-range spectra
observed in space plasmas (see also Section 7.11).

7.7. Unfreezing of Flux

As ERMHD is a limit of the isothermal-electron-fluid system
(Section 4), the magnetic-field lines remain unbroken (see
Section 4.3). Within the orderings employed above (small mass
ratio, νii ∼ ω, βi ∼ 1, τ ∼ 1), the flux unfreezes only in the
vicinity of the electron gyroscale. It is interesting to evaluate
somewhat more precisely the scale at which this happens as a
function of plasma parameters.

Physically, there are three kinds of mechanisms by which the
flux conservation is broken: electron inertia, the effects of finite
electron gyroradius, and Ohmic resistivity. Let us take the v∥
moment of the electron gyrokinetic equation (Equation (57),
s = e, integration at constant r) and use Equation (222)
to evaluate the inertial term in the resulting parallel electron
momentum equation:
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In other words, this says that ∂/∂z ∼ (δB⊥ /B0) · ∇⊥ and so
δB⊥ λ/B0 ∼ λ/l∥λ (note that the last relation confirms that our
scaling arguments do not violate the gyrokinetic ordering; see
Sections 2.1 and 3.1). Equation (239) is the critical-balance
assumption for KAW. As in the case of the Alfvén waves
(Section 1.2), we might argue physically that the critical balance
is set up because the parallel correlation length l∥λ is determined
by the condition that a wave can propagate the distance l∥λ in one
nonlinear decorrelation time corresponding to the perpendicular
correlation length λ.

Combining Equations (238) and (239), we get the desired
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A/ε, as in Section 1.2. The first of these scaling

relations is equivalent to a k
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⊥ spectrum of magnetic energy,

the second quantifies the anisotropy (which is stronger than
for the GS turbulence). Both scalings were confirmed in the
numerical simulations of Cho & Lazarian (2004)—it is their
detection of the scaling (241) that makes a particularly strong
case that KAW turbulence is not weak and that the critical
balance hypothesis applies.

For KAW-like fluctuations, the density (Equation (221)) and
magnetic field (Equations (223) and (231)) have the same
spectrum as the scalar potential, i.e., k
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spectra reported by Bale et al. (2005) indeed are consistent
with a transition to KAW turbulence around the ion gyroscale:
k−5/3 magnetic and electric-field power spectra at kρi ≪ 1
are replaced, for kρi ! 1, with what appears to be consistent
with a k−7/3 scaling for the magnetic-field spectrum and a
k−1/3 for the electric one (see Figure 1). A similar result is
recovered in fully gyrokinetic simulations with βi = 1, τ = 1
(Howes et al. 2008b). However, not all solar-wind observations
are quite as straightforwardly supportive of the notion of the
KAW cascade and much steeper magnetic-fluctuation spectra
have also been reported (e.g., Denskat et al. 1983; Leamon et al.
1998; Smith et al. 2006). Possible reasons for this will emerge
in Sections 7.6 and 7.11 and the solar-wind data are further
discussed in Sections 8.2.4 and 8.2.5.

7.6. Validity of the Electron RMHD and the Effect of Electron
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The ERMHD equations derived in Section 7 are valid pro-
vided k⊥ ρi ≫ 1 and also provided it is sufficient to use the
leading order in the mass-ratio expansion (isothermal electrons;
see Section 4). In particular, this means that the electron Lan-
dau damping is neglected. Asymptotically speaking, this is a
rigorous limit, but one must be cautious in applying it to real

plasmas. Since the width of the scale range where k⊥ ρi ≫ 1
and k⊥ ρe ≪ 1 is only ∼ (mi/me)1/2 ≃ 43, for some val-
ues of the plasma parameters (T0i/T0e and βi) there may not
be a very broad interval of scales where the electron Lan-
dau damping is truly negligible. Consider, for example, the
low-beta limit, βi ≪ 1. In this limit, the KAW frequency is
ω ∼ k⊥ ρik∥vA (Equation (230)). The electron Landau damping
becomes important when ω ∼ k∥vthe, or k⊥ ρe ∼
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so the ERMHD approximation breaks down and, consequently,
the KAW cascade, if any, should be interrupted well before
the electron gyroscale is reached. Figure 8 shows the solu-
tion of the full gyrokinetic dispersion relation (Howes et al.
2006) for small, unity and large βi . One can judge for which
scales and how well (or how badly) the ERMHD approximation
holds from the precision with which the exact frequency follows
the asymptotic solution Equation (230) and from the relative
strength of the damping compared to the real frequency of the
waves.

Non-negligible electron Landau damping may affect turbu-
lence spectra because one can no longer assume a constant
flux of KAW energy as we did in Section 7.5. To evaluate the
consequences of this effect, Howes et al. (2008a) constructed
a simple model of spectral energy transfer and concluded that
Landau damping leads to steepening of the KAW spectra—one
of several possible reasons for steep dissipation-range spectra
observed in space plasmas (see also Section 7.11).

7.7. Unfreezing of Flux

As ERMHD is a limit of the isothermal-electron-fluid system
(Section 4), the magnetic-field lines remain unbroken (see
Section 4.3). Within the orderings employed above (small mass
ratio, νii ∼ ω, βi ∼ 1, τ ∼ 1), the flux unfreezes only in the
vicinity of the electron gyroscale. It is interesting to evaluate
somewhat more precisely the scale at which this happens as a
function of plasma parameters.

Physically, there are three kinds of mechanisms by which the
flux conservation is broken: electron inertia, the effects of finite
electron gyroradius, and Ohmic resistivity. Let us take the v∥
moment of the electron gyrokinetic equation (Equation (57),
s = e, integration at constant r) and use Equation (222)
to evaluate the inertial term in the resulting parallel electron
momentum equation:

cme

e

∂u∥e

∂t
= ∂

∂t
d2

e∇2
⊥ A∥, (242)

where de = ρe/
√
βe is the electron inertial scale and βe =

Zβi/τ . Comparing this with the ∂A∥/∂t term in the right-
hand side of the electron momentum equation, we see that the
electron inertia becomes important when k⊥ ρe ∼

√
βe. The

finite-gyroradius effects enter when k⊥ ρe ∼ 1. Thus, at low
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The waves are elliptically right-hand polarized. Indeed, using
Equation (223), the perpendicular electric field is:

E⊥k = − ik⊥ϕ +
iωk

c
A⊥k

=
[
−ik⊥ + ẑ× k⊥

ωk

Ωi

βi

k2
⊥ρ

2
i

(
1 +

Z

τ

)]
ϕ (233)

(cf. Gary 1986; Hollweg 1999). The second term is small in
the gyrokinetic expansion, so this is a very elongated ellipse
(Figure 9).

7.4. Finite-Amplitude Kinetic Alfvén Waves

As we are about to argue for a critically balanced KAW
turbulence in a fashion analogous to the GS theory for the
Alfvén waves (Section 1.2), it is a natural question to ask how
similar the nonlinear properties of a putative KAW cascade will
be to an Alfvén-wave cascade. As in the case of Alfvén waves,
there are two counterpropagating linear modes (Equations (230)
and (231)), and it turns out that certain superpositions of these
modes (KAW packets) are also exact nonlinear solutions of
Equations (226)–(227). Let us show that this is the case.

We might look for the nonlinear solutions of Equations
(226)–(227) by requiring that the nonlinear terms vanish. Since
b̂ · ∇ = ∂/∂z + (1/vA){Ψ, · · ·}, this gives

{Ψ, Φ} = 0 ⇒ Ψ = c1Φ, (234)

{Ψ, ρ2
i ∇2

⊥Ψ} = 0 ⇒ ρ2
i ∇2

⊥Ψ = c2Ψ, (235)

where c1 and c2 are constants. Whether such solutions are
possible is determined by substituting Equations (234) and (235)
into Equations (226) and (227) and demanding that the two
resulting linear equations be consistent with each other (both
equations now just evolve Ψ). This is achieved if29

c2
1 = − 1

c2

(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
, (236)

so real solutions exist if c2 < 0. In particular, wave packets
consisting of KAW given by one of the linear eigenmodes
(231) with an arbitrary shape in z but confined to a single
shell |k⊥| = k⊥ = const, satisfy Equations (234)–(236) with
c2 = −k2

⊥ρ
2
i . This outcome is, in fact, only mildly non-trivial: in

gyrokinetics, the Poisson bracket nonlinearity (Equation (59))
vanishes for any monochromatic (in k⊥) mode because the
Poisson bracket of two modes with wavenumbers k⊥ and k′⊥
is ∝ ẑ · (k⊥ × k′⊥). Therefore, any monochromatic solution
of the linearized equations is also an exact nonlinear solution.
As we have shown above, a superposition of monochromatic
KAW that have a fixed k⊥, or, somewhat more generally, satisfy
Equation (235) with a fixed c2, is still an exact solution.

Note that a similar procedure applied to the RMHD Equa-
tions (17)–(18) returns the Elsasser solutions: perturbations of
arbitrary shape that satisfy Φ = ± Ψ. The physical difference
between these finite-amplitude Alfven-wave packets and the
finite-amplitude KAW packets discussed above is that non-
linear interactions can occur not just between counterpropa-
gating KAW but also between copropagating ones—a natu-
ral conclusion because KAW are dispersive (their group ve-
locity along the guide field is ∝ vAk⊥ρi), so copropagating

29 Formally speaking, c1 and c2 can depend on t and z. If this is allowed, we
still recover Equation (236), but in addition to it, we get the evolution equation
c1∂c1/∂t = vA(1 + Z/τ )∂c1/∂z. This allows c1 = const, but there are, of
course, other solutions. We shall not consider them here.

waves with different k⊥ can “catch up” with each other and
interact.30

7.5. Scalings for KAW Turbulence

A scaling theory for the turbulence described by Equations
(221)–(227) can be constructed along the same lines as the GS
theory for the Alfvén-wave turbulence (Section 1.2). Namely,
we shall assume that the turbulence below the ion gyroscale
consists of KAW-like fluctuations with k∥ ≪ k⊥ (Quataert
& Gruzinov 1999) and that the interactions between them
are critically balanced (Cho & Lazarian 2004), i.e., that the
propagation time and nonlinear interaction time are comparable
at every scale. We stress that none of these assumptions are,
strictly speaking, inevitable31 (and, in fact, neither were they
inevitable in the case of Alfvén waves). Since we have derived
Equations (226)–(227) from gyrokinetics, the anisotropy of the
fluctuations described by these equations is hard-wired, but it
is not guaranteed that the actual physical cascade below the ion
gyroscale is indeed anisotropic, although analysis of solar-wind
measurements does seem to indicate that at least a significant
fraction of it is (see Leamon et al. 1998; Hamilton et al. 2008).
Numerical simulations based on Equation (228) (Biskamp et al.
1996, 1999; Ghosh et al. 1996; Ng et al. 2003; Cho & Lazarian
2004; Shaikh & Zank 2005) have revealed that the spectrum of
magnetic fluctuations scales as k

−7/3
⊥ , the outcome consistent

with the assumptions stated above. Let us outline the argument
that leads to this scaling.

First assume that the fluctuations are KAW-like and that Θ+

and Θ− (Equation (231)) have similar scaling. This implies

Ψλ ∼
√

1 + βi

λ

ρi

Φλ (237)

(for the purposes of scaling arguments and order-of-magnitude
estimates, we set Z/τ = 1, but keep the βi dependence so
low- and high-beta limits could be recovered if necessary). The
fact that fixed-k⊥ KAW packets, which satisfy Equation (237)
with λ = 1/k⊥, are exact nonlinear solutions of the ERMHD
equations (Section 7.4) lends some credence to this assumption.

Assuming scale-space locality of interactions implies a
constant-flux KAW cascade: analogously to Equation (1),

(Ψλ/λ)2

τKAWλ

∼ (1 + βi)(Φλ/ρi)2

τKAWλ

∼εKAW = const, (238)

where τKAWλ is the cascade time and εKAW is the KAW energy
flux proportional to the fraction of the total flux ε (or the total
turbulent power Pext; see Section 3.4) that was converted into
the KAW cascade at the ion gyroscale.

Using Equations (226)–(227) and Equation (237), it is not
hard to see that the characteristic nonlinear decorrelation time is

30 The calculation above is analogous to the calculation by Mahajan & Krishan
(2005) for incompressible Hall MHD (i.e., essentially, the high-βe limit of the
equations discussed in Appendix E), but the result is more general in the sense
that it holds at arbitrary ion and electron betas. The Mahajan–Krishan solution
in the EMHD limit amounts to noticing that Equation (228) becomes linear for
force-free (Beltrami) magnetic perturbations, ∇ × δB = λδB. Substituting
Equation (229) into this equation and using Equation (223), we see that the
force-free equation is equivalent to Equations (234)–(236) if c2 = −λ2 and the
incompressible limit (βi ≫ 1 or βe = βiZ/τ ≫ 1) is taken.
31 In fact, the EMHD turbulence was thought to be weak by several authors,
who predicted a k−2 spectrum of magnetic energy assuming isotropy
(Goldreich & Reisenegger 1992) or k

−5/2
⊥ for the anisotropic case (Voitenko

1998; Galtier & Bhattacharjee 2003; Galtier 2006).
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states that the parallel ion flow velocity can be neglected. Finally,
Equation (223) expresses the pressure balance for Boltzmann
(and, therefore, isothermal) electrons (Equation (103)) and ions:
if we write

B0δB∥

4π
= − δpi − δpe = − T0iδni − T0eδne, (224)

it follows that

δB∥

B0
= − βi

2

(
1 +

Z

τ

)
δne

n0e

, (225)

which, combined with Equation (221), gives Equation (223).
We remind the reader that the perpendicular Ampère’s law,
from which Equation (223) was derived (Equation (66) via
Equation (120)) is, in gyrokinetics, indeed equivalent to the
statement of perpendicular pressure balance (see Section 3.3).

Substituting Equations (221)–(223) into Equations (116)–
(117), we obtain the following closed system of equations

∂Ψ
∂t

= vA

(
1 +

Z

τ

)
b̂ · ∇Φ, (226)

∂Φ
∂t

= − vA

2 + βi (1 + Z/τ )
b̂ · ∇

(
ρ2

i ∇2
⊥ Ψ

)
. (227)

Note that, using Equation (223), Equations (226) and (227) can
be recast as two coupled evolution equations for the perpendic-
ular and parallel components of the perturbed magnetic field,
respectively (Equations (C10) in Appendix C.2).

We shall refer to Equations (226)–(227) as electron reduced
MHD (ERMHD). They are related to the electron magnetohy-
drodynamics (EMHD)—a fluid-like approximation that evolves
the magnetic field only and arises if one assumes that the mag-
netic field is frozen into the electron flow velocity ue, while the
ions are immobile, ui = 0 (Kingsep et al. 1990):

∂B
∂t

= − c

4πen0e

∇ × [(∇ × B)× B] . (228)

As explained in Appendix C.2, the result of applying the
RMHD/gyrokinetic ordering (Sections 2.1 and 3.1) to Equa-
tion (228), where B = B0ẑ + δB and

δB
B0

= 1
vA

ẑ×∇⊥ Ψ + ẑ
δB∥

B0
, (229)

coincides with our Equations (226)–(227) in the effectively in-
compressible limits of βi ≫ 1 or βe = βiZ/τ ≫ 1. When betas
are arbitrary, density fluctuations cannot be neglected compared
to the magnetic-field-strength fluctuations (Equation (225)) and
give rise to perpendicular ion flows with ∇ · ui ̸= 0. Thus, our
ERMHD system constitutes the appropriate generalization of
EMHD for low-frequency anisotropic fluctuations without the
assumption of incompressibility.

A (more tenuous) relationship also exists between our ER-
MHD system and the so-called Hall MHD, which, like EMHD,
is based on the magnetic field being frozen into the electron flow,
but includes the ion motion via the standard MHD momentum
equation (Equation (8)). Strictly speaking, Hall MHD can only
be used in the limit of cold ions, τ = T0i/T0e ≪ 1 (see, e.g.,
Ito et al. 2004; Hirose et al. 2004, and Appendix E), in which
case it can be shown to reduce to Equations (226)–(227) in the
appropriate small-scale limit (Appendix E). Although τ ≪ 1

Figure 9. Polarization of the kinetic Alfvén wave, see Equations (232) and
(233).

is not a natural assumption for most space and astrophysical
plasmas, Hall MHD has, due to its simplicity, been a popular
theoretical paradigm in the studies of space and astrophysical
plasma turbulence (see Section 8.2.6). We have therefore de-
voted Appendix E to showing how this approximation fits into
the theoretical framework proposed here: namely, we derive the
anisotropic low-frequency version of the Hall MHD approx-
imation from gyrokinetics under the assumption τ ≪ 1 and
discuss the role of the ion inertial and ion sound scales, which
acquire physical significance in this limit. However, outside this
Appendix, we assume τ ∼1 everywhere and shall not use Hall
MHD.

The validity of the ERMHD equations as a model for
plasma dynamics in the dissipation range is further discussed in
Section 7.6.

7.3. Kinetic Alfvén Waves

The linear modes supported by ERMHD are kinetic Alfvén
waves (KAW) with frequencies

ωk = ±

√
1 + Z/τ

2 + βi (1 + Z/τ )
k⊥ ρik∥vA. (230)

This dispersion relation is illustrated in Figure 8: note that the
transition from Alfvén waves to dispersive KAW always occurs
at k⊥ ρi ∼1, even when βi ≪ 1 or βi ≫ 1. In the latter case,
there is a sharp frequency jump at the transition (accompanied
by very strong ion Landau damping).

The eigenfunctions corresponding to the two waves with
frequencies (230) are

Θ±
k =

√(
1 +

Z

τ

)[
2 + βi

(
1 +

Z

τ

)]
Φk

ρi

∓k⊥ Ψk. (231)

Using Equations (229) and (223), the perturbed magnetic-field
vector can be expressed as follows

δBk

B0
= − iẑ× k⊥

k⊥

Θ+
k − Θ−k
2vA

+ ẑ

√
1 + Z/τ

2 + βi (1 + Z/τ )
Θ+

k + Θ−k
2vA

,

(232)
so, for a single “+” or “− ” wave (corresponding to Θ−k = 0 or
Θ+

k = 0, respectively), δBk rotates in the plane perpendicular to
the wave vector k⊥ clockwise with respect to the latter, while
the wave propagates parallel or antiparallel to the guide field
(Figure 9).
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Figure 5. Channels of the kinetic cascade of generalized energy (Section 3.4)
from large to small scales: see Section 2.7 and Appendix D.2 (inertial range,
collisional regime), Sections 5.6 and 6.2.5 (inertial range, collisionless regime),
Section 7.8 and Section 7.12 (dissipation range). Note that some ion heating
probably also results from the collisional and collisionless damping of the
compressive fluctuations in the inertial range (see Sections 6.1.2 and 6.2.4).

5.6. Generalized Energy: Three KRMHD Cascades

The generalized energy (Section 3.4) in the limit k⊥ρi ≪ 1 is
calculated by substituting into Equation (109) the perturbed ion
distribution function δfi = 2v⊥ ·uEF0i/v

2
thi +δf̃i (see Equations

(143) and (149)). After performing velocity integration, we get

W =
∫

d3r
[
min0iu

2
E

2
+
δB2

⊥
8π

+
n0iT0i

2

(
Z

τ

δn2
e

n2
0e

+
2
βi

δB2
∥

B2
0

+
1

n0i

∫
d3v

δf̃ 2
i

F0i

)]

= WAW + Wcompr. (153)

We see that the kinetic energy of the Alfvénic fluctuations has
emerged from the ion-entropy part of the generalized energy.
The first two terms in Equation (153) are the total (kinetic plus
magnetic) energy of the Alfvén waves, denoted WAW. As we
learned from Section 5.3, it cascades independently of the rest of
the generalized energy, Wcompr, which contains the compressive
component of the turbulence (Section 5.5) and is the invariant
conserved by Equations (150)–(152).

In terms of the potentials used in our discussion of RMHD in
Section 2, we have

WAW =
∫

d3r
min0i

2

(
|∇⊥Φ|2 + |∇⊥Ψ|2

)

=
∫

d3r
min0i

2

(
|∇⊥ζ +|2 + |∇⊥ζ − |2

)

= W +
AW + W −

AW (154)

where W +
AW and W −

AW are the energies of the “+” and “− ” waves
(Equation (33)), which, as we know from Section 2.3, cascade
by scattering off each other but without exchanging energy.

Thus, the kinetic cascade in the limit k⊥ρi ≪ 1 is split,
independently of the collisionality, into three cascades: of W +

AW,
W −

AW and Wcompr. The compressive cascade is, in fact, split
into three independent cascades—the splitting is different in the
collisional limit (Appendix D.2) and in the collisionless one
(Section 6.2.5). Figure 5 schematically summarizes both the
splitting of the kinetic cascade that we have worked out so far
and the upcoming developments.

5.7. Summary

In Section 4, gyrokinetics was reduced to a hybrid fluid-
kinetic system by means of an expansion in the electron mass,
which was valid for k⊥ρe ≪ 1. In this section, we have further
restricted the scale range by taking k⊥ρi ≪ 1 and as a result have
been able to achieve a further reduction in the complexity of the
kinetic theory describing the turbulent cascades. The reduced
theory derived here evolves 5 unknown functions: Φ, Ψ, δB∥,
δne and g. The stream and flux functions, Φ and Ψ are related to
the fluid quantities (perpendicular velocity and magnetic field
perturbations) via Equation (16) and to the electromagnetic
potentialsϕ, A∥ via Equation (135). They satisfy a closed system
of equations, Equations (17)–(18), which describe the decoupled
cascade of Alfvén waves. These are the same equations that
arise from the MHD approximations, but we have now proven
that their validity does not depend on the assumption of high
collisionality (the fluid limit) and extends to scales well below
the mean free path, but above the ion gyroscale. The physical
reasons for this are explained in Section 5.4. The density
and magnetic-field-strength fluctuations (the “compressive”
fluctuations, or the slow waves and the entropy mode in the
MHD limit) now require a kinetic description in terms of the
ion distribution function g (or δf̃i , Equation (149)), evolved
by the kinetic Equation (145) (or Equation (150)). The kinetic
equation contains δne and δB∥, which are, in turn calculated in
terms of the velocity-space integrals of g via Equations (146) and
(148) (or Equations (151) and (152)). The nonlinear evolution
(turbulent cascade) of g, δB∥ and δne is due solely to passive
advection of g by the Alfvén-wave turbulence.

Let us summarize the new set of equations:

∂Ψ
∂t

= vAb̂ · ∇Φ, (155)

d

dt
∇2
⊥Φ = vAb̂ · ∇∇2

⊥Ψ, (156)

dg

dt
+ v∥ b̂ · ∇ [g +

(
Z

τ

δne

n0e

+
v2
⊥

v2
thi

δB∥

B0

)
F0i

]

=
〈
Cii

[
g +

v2
⊥

v2
thi

δB∥

B0
F0i

]〉

Ri

, (157)

δne

n0e

=−
[
Z

τ
+ 2

(
1 +

1
βi

)]− 1 1
n0i

∫
d3v

[
v2
⊥

v2
thi

− 2
(

1 +
1
βi

)]
g,

(158)

δB∥

B0
=−

[
Z

τ
+ 2

(
1 +

1
βi

)]− 1 1
n0i

∫
d3v

(
v2
⊥

v2
thi

+
Z

τ

)
g,

(159)

where
d

dt
= ∂

∂t
+ {Φ, · · ·} , b̂ · ∇ = ∂

∂z
+

1
vA

{Ψ, · · ·} .

(160)

An explicit form of the collision term in the right-hand side of
Equation (157) is provided in Appendix B.3 (Equation (B18)).

The generalized energy conserved by Equations (155)–(159)
is given by Equation (153). The kinetic cascade is split, the
Alfvénic cascade proceeding independently of the compressive
one (see Figure 5).

From Schekochihin et al (2009)
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Substituting this into Equation (253), we get

hiλ ∼
n0i

v3
thi

(
εh

ε

)1/2 (
ε

εKAW

)1/6 (1 + βi)1/6

√
βi

l
−1/3
0 ρ

1/6
i λ1/6,

(257)
which corresponds to a k

−4/3
⊥ spectrum of entropy.

In the argument presented above, we assumed that the scaling
of hi was determined by the nonlinear mixing of hi by the ring-
averaged KAW fluctuations rather than by the wave–particle-
interaction term on the right-hand side of Equation (249). We
can now confirm the validity of this assumption. The change in
amplitude of hi in one KAW correlation time τKAWλ due to the
wave–particle-interaction term is

∆hiλ ∼
n0i

v3
thi

(
λ

ρi

)1/2 Φλ√
βi ρivA

∼ n0i

v3
thi

(εKAW

ε

)1/3 1√
βi (1 + βi)1/3

l
−1/3
0 ρ

−5/6
i λ7/6, (258)

where we have used Equation (240). Comparing this with
Equation (255) and using Equation (257), we see that ∆hiλ

in Equation (258) is a factor of (λ/ρi)1/2 smaller than ∆hiλ due
to the nonlinear mixing.

7.9.3. Phase-Space Cutoff

To work out the cutoff scales both in the position and velocity
space, we use Equations (251) and (252): in Equation (251),
ω ∼ 1/τhλ, where τhλ is the characteristic decorrelation time of
hi given by Equation (256); using Equation (252), we find the
cutoffs:

δv⊥

vthi

∼ 1
k⊥ρi

∼ (νiiτρi
)3/5 = Do−3/5, (259)

where τρi
is the cascade time (Equation (256)) taken at λ = ρi .

By a recently established convention, the dimensionless number
Do = 1/νiiτρi

is called the Dorland number. It plays the
role of Reynolds number for kinetic turbulence, measuring the
scale separation between the ion gyroscale and the collisional
dissipation scale (Schekochihin et al. 2008b; Tatsuno et al.
2009a, 2009b).

7.9.4. Parallel Phase Mixing

Another assumption, which was made implicitly, was that
the parallel phase mixing due to the second term on the left-
hand side of Equation (249) could be ignored. This requires
justification, especially because it is with this “ballistic” term
that one traditionally associates the emergence of small-scale
structure in the velocity space (e.g., Krommes & Hu 1994;
Krommes 1999; Watanabe & Sugama 2004). The effect of the
parallel phase mixing is to produce small scales in velocity
space δv∥ ∼ 1/k∥t . Let us assume that the KAW turbulence
imparts its parallel decorrelation scale to hi and use the scaling
relation (241) to estimate k∥ ∼ l−1

∥λ . Then, after one cascade time
τhλ (Equation (256)), hi is decorrelated on the parallel velocity
scales

δv∥

vthi

∼ l∥λ

vthiτhλ
∼ 1√

βi(1 + βi)
∼ 1. (260)

We conclude that the nonlinear perpendicular phase mixing
(Equation (259)) is more efficient than the linear parallel
one. Note that up to a βi-dependent factor Equation (260) is
equivalent to a critical-balance-like assumption for hi in the

sense that the propagation time is comparable to the cascade
time, or k∥v∥ ∼ τ−1

hλ (see Equation (249)).

7.10. Entropy Cascade in the Absence of KAW Turbulence

It is not currently known how one might determine analyt-
ically what fraction of the turbulent power arriving from the
inertial range to the ion gyroscale is channeled into the KAW
cascade and what fraction is dissipated via the kinetic ion-
entropy cascade introduced in Section 7.9 (perhaps it can only
be determined by direct numerical simulations). It is certainly a
fact that in many solar-wind measurements, the relatively shal-
low magnetic-energy spectra associated with the KAW cascade
(Section 7.5) fail to appear and much steeper spectra are de-
tected (close to k−4; see Leamon et al. 1998; Smith et al. 2006).
In view of this evidence, it is interesting to ask what would be the
nature of electromagnetic fluctuations below the ion gyroscale
if the KAW cascade failed to be launched, i.e., if all (or most) of
the turbulent power were directed into the entropy cascade (i.e.,
if W ≃ Whi

in Section 7.8).

7.10.1. Equations

It is again possible to derive a closed set of equations for all
fluctuating quantities.

Let us assume (and verify a posteriori; Section 7.10.4) that the
characteristic frequency of such fluctuations is much lower than
the KAW frequency (Equation (230)) so that the first term in
Equation (116) is small and the equation reduces to the balance
of the other two terms. This gives

δne

n0e

= eϕ

T0e

, (261)

meaning that the electrons are purely Boltzmann (he = 0 to
lowest order; see Equation (101)). Then, from Equation (118),

Zeϕ

T0i

≡ 2Φ
ρivthi

=
(

1 +
τ

Z

)−1 ∑

k

eik·r 1
n0i

∫
d 3v J0(ai)hik

(262)
Using Equation (262), we find from Equation (120) that the

field-strength fluctuations are

δB∥

B0
= −βi

2

∑

k

eik·r 1
n0i

∫
d 3v

2v2
⊥

v2
thi

J1(ai)
ai

hik, (263)

which is smaller than Zeϕ/T0i by a factor of βi/k⊥ρi .
Therefore, we can neglect δB∥/B0 compared to δne/n0e in

Equation (117). Using Equation (261), we get what is physically
the electron continuity equation:

∂

∂t

eϕ

T0e

+ b̂ · ∇
(

c

4πen0e

∇2
⊥A∥ + u∥i

)
= 0, (264)

u∥i =
∑

k

eik·r 1
n0i

∫
d 3v v∥J0(ai)hik. (265)

Note that in terms of the stream and flux functions, Equa-
tion (264) takes the form

∂

∂z
ρ2

i ∇2
⊥Ψ =

√
βi

(
2τ
Z

1
vthi

∂Φ
∂t

+ ρi

∂u∥i

∂z

)
, (266)

where we have approximated b̂ ·∇ ≃ ∂/∂z, which will, indeed,
be shown to be correct in Section 7.10.4.

Linear phase mixing:

f(x, v, t) = [1 + A (sin(k0x) cos(k0vt)�

cos(k0x) sin(k0vt))] e�v2/v2
t

∂fs
∂t

+ v
∂fs
∂x

= 0 δF = F - F(t=0)



Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.
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• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).
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Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).

• Current sheets also form at ion scales and 
may be responsible for dissipation.

(!! 10"2 for the runs reported here). The latter choice is
not intended to mimic any specific plasma kinetic process,
but rather to damp out numerical instabilities that may
strongly damage the genuine properties of small-scale
turbulence [11]. Electron inertia effects have not been
included in Eq. (1) [12].

The initial condition consists of a Maxwellian plasma
perturbed by a 2D spectrum of Fourier modes, imposed for
both the velocity and the magnetic field. To avoid an
artificial compressive activity, neither density perturba-
tions nor parallel variance (bz, vz) are imposed at t ¼ 0.
Energy has been injected, with random phases, in the range
2 $ m $ 6, wherem ¼ ðL0=2"Þk, and L0 ¼ 2"#di being
the system size (# is a positive real number). Periodic
boundary conditions have been employed. The ion plasma
beta is $ ¼ 2v2

ti=V
2
A ¼ 2 (vti is the ion thermal speed),

while the electron to ion temperature ratio is fixed at
Te=Ti ¼ 1. The limits of the velocity domain in each
direction are fixed at vmax ¼ '5vti. For all runs, 5122

mesh points in physical space and 513 in velocity space
are used. To investigate the influence of both turbulence
and system size, we performed different runs varying
%b=B0 (%b ¼ hb2x þ b2yiand h)irepresents spatial aver-
ages) and L0=di. Simulations are reported in Table I.

In analogy with fluid models, in decaying turbulence
there is an instant of time, let us say &?, at which the
turbulent activity is maximum [13]. This time can be
estimated measuring the average out-of-plane squared cur-
rent densityhj2zi. At &?, summarized for each run in Table I,
we perform our analysis (a study of the time evolution will
be presented in future works.) As follows, we give a brief
overview on turbulence, analyzing Run II (all the simula-
tions give qualitatively similar results). As represented in
Fig. 1(a), turbulence manifests through the appearance of
coherent structures, exhibiting a sea of vortices (islands)
and current sheets. This can be seen in contour maps of jz
and az, where az is the magnetic potential of the inplane
magnetic field b? ¼ raz * ẑ. In between islands jz be-
comes very intense, being a signature of the intermittent
nature of the magnetic field [6]. In these regions of high
magnetic stress, reconnection locally occurs at the X points
of az [crosses in Fig. 1(a)] [14,15]. From a qualitative
analysis, the size of these current sheets is of the order of
few di’s (note that these also manifest a bifurcation, typical
signature of the Hall effect).

To quantify turbulence, we computed the power spectra
for the density n, the ion bulk velocity u, the magnetic b,

and electric E fields. These power spectra reveal several
features commonly observed in space plasmas and that are
shown in Fig. 1(b). As observed in solar wind turbulence
[6], the large scale activity is essentially incompressible,
namely jnkj2 is negligible for low k’s [6]. The Alfvénic
correlation between the magnetic and the velocity field,
typical of magnetohydrodynamic turbulence, is broken at
kdi ! 1 [10,16]. At small scales, comparable or smaller
than di, the spectra become steeper, due mainly to the
presence of kinetic effects. As in previous works
[7,10,16], it is worth noting that the electric activity at
higher k’s is more intense than the magnetic one.
The concentration of current in sheetlike structures,

observed in Fig. 1, suggests that also kinetic effects may
nuzzle locally as well. To get more insight in this intriguing
phenomenon, we will quantify kinetic effects looking
directly at the high-order velocity moments of the DF.

TABLE I. Initial amount of magnetic fluctuations (second
column), system size (third column), and time of the peak of
the turbulent activity (last column).

%b=B0 L0=di &? ð!"1
ci Þ

Run I 1=7 2"* 30 150
Run II 1=3 2"* 20 50
Run III 1=3 2"* 10 20

FIG. 1 (color online). (a) Shaded contours (zoom) of jz to-
gether with az (isolines) and its X points (black crosses).
(b) Power spectra of ion density (green dotted), ion bulk velocity
(red dashed), magnetic field (black solid), and electric field (dot-
dashed blue). The Kolmogorov expectation k"5=3 (gray dashed)
is reported as a reference, while the vertical dashed line repre-
sents the ion skin depth wave number.

PRL 108, 045001 (2012) P HY S I CA L R EV I EW LE T T E R S
week ending

27 JANUARY 2012

045001-2

Shaded contours of jz together with Az 
isolines, and its X points (black crosses) 

[Servidio et al PRL (2012)].



Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).

• Current sheets also form at ion scales and 
may be responsible for dissipation.

• Energy can also dissipate via other 
mechanisms, such as stochastic heating.

Trajectories of test-particle protons 
interacting with a spectrum of randomly 

phased AWs and KAWs for different 
values of the stochasticity parameter δ  

[Hoppock et al JPP (2019)].

6 I. W. Hoppock et al.

Figure 1: Trajectories of test-particle protons interacting with a spectrum of randomly
phased AWs and KAWs for different values of the stochasticity parameter δ defined
in (2.21).

shown in the right panel of figure 1, δ = 0.15, and the proton trajectory is more disordered
or random.
We now consider the third term on the right-hand side of (2.14). The instantaneous

value of this term is comparable to the instantaneous value of the second term given (2.9)
and (2.16), but the third term is less effective at causing guiding-center displacements
over time for the following reason. Because of (2.7), the time t∥ required for v∥ to change
by a factor of order unity is ≫ Ω−1. If we integrate the third term on the right-hand side
of (2.14) from t = 0 to t = tf , where Ω−1 ≪ tf ≪ t∥, we can treat v∥ as approximately
constant in (2.14), obtaining

∫ tf

0

v∥
Ω
b̂×

db̂

dt
dt =

v∥
Ω0

B0

B0
×∆b̂ (2.22)

to leading order in δBρ/B0, where Ω0 = qB0/mc and ∆b̂ = b̂(tf) − b̂(0) is the change
in b̂. There is, however, no secular change in the value of b̂ at the proton’s location;
the magnetic-field unit vector merely undergoes small-amplitude fluctuations about
the direction of the background magnetic field. Thus, over time, the guiding-center
displacements caused by the third term on the right-hand side of (2.14) are largely
reversible and tend to cancel out. The third term is thus less effective than the second
term at making proton orbits stochastic.
When the stochasticity parameter δ defined in (2.21) exceeds some threshold, the

motion of a thermal proton’s guiding center in the plane perpendicular toB0 is reasonably
approximated by a random walk. To estimate the time step of this random walk, we begin
by defining the cyclotron average of (dR/dt)⊥,

vR(t) ≡
Ω

2π

∫ t+π/Ω

t−π/Ω

(

dR

dt1

)

⊥

dt1. (2.23)

As stated above, during a single cyclotron period a proton’s motion projected onto
the plane perpendicular to B0 carries the proton through an order-unity number of
uncorrelated gyroscale AW/KAW “eddies.” For simplicity, we take the amplitude and
direction of each vector term on the right-hand side of (2.14) to be approximately constant



Turbulence at kinetic scales

• Anisotropic cascade of MHD Alfvén waves 
transitions to a cascade of kinetic Alfvén 
waves at the ion Larmor radius.

• Dissipation begins at ion kinetic scales in the 
form wave-particle interactions (Landau, 
transit-time, cyclotron, …).

• Current sheets also form at ion scales and 
may be responsible for dissipation.

• Energy can also dissipate via other 
mechanisms, such as stochastic heating.

• Which mechanism is dominant in weakly 
collisional kinetic plasmas, and how do they 
each heat the plasma?

(!! 10"2 for the runs reported here). The latter choice is
not intended to mimic any specific plasma kinetic process,
but rather to damp out numerical instabilities that may
strongly damage the genuine properties of small-scale
turbulence [11]. Electron inertia effects have not been
included in Eq. (1) [12].

The initial condition consists of a Maxwellian plasma
perturbed by a 2D spectrum of Fourier modes, imposed for
both the velocity and the magnetic field. To avoid an
artificial compressive activity, neither density perturba-
tions nor parallel variance (bz, vz) are imposed at t ¼ 0.
Energy has been injected, with random phases, in the range
2 $ m $ 6, wherem ¼ ðL0=2"Þk, and L0 ¼ 2"#di being
the system size (# is a positive real number). Periodic
boundary conditions have been employed. The ion plasma
beta is $ ¼ 2v2

ti=V
2
A ¼ 2 (vti is the ion thermal speed),

while the electron to ion temperature ratio is fixed at
Te=Ti ¼ 1. The limits of the velocity domain in each
direction are fixed at vmax ¼ '5vti. For all runs, 5122

mesh points in physical space and 513 in velocity space
are used. To investigate the influence of both turbulence
and system size, we performed different runs varying
%b=B0 (%b ¼ hb2x þ b2yiand h)irepresents spatial aver-
ages) and L0=di. Simulations are reported in Table I.

In analogy with fluid models, in decaying turbulence
there is an instant of time, let us say &?, at which the
turbulent activity is maximum [13]. This time can be
estimated measuring the average out-of-plane squared cur-
rent densityhj2zi. At &?, summarized for each run in Table I,
we perform our analysis (a study of the time evolution will
be presented in future works.) As follows, we give a brief
overview on turbulence, analyzing Run II (all the simula-
tions give qualitatively similar results). As represented in
Fig. 1(a), turbulence manifests through the appearance of
coherent structures, exhibiting a sea of vortices (islands)
and current sheets. This can be seen in contour maps of jz
and az, where az is the magnetic potential of the inplane
magnetic field b? ¼ raz * ẑ. In between islands jz be-
comes very intense, being a signature of the intermittent
nature of the magnetic field [6]. In these regions of high
magnetic stress, reconnection locally occurs at the X points
of az [crosses in Fig. 1(a)] [14,15]. From a qualitative
analysis, the size of these current sheets is of the order of
few di’s (note that these also manifest a bifurcation, typical
signature of the Hall effect).

To quantify turbulence, we computed the power spectra
for the density n, the ion bulk velocity u, the magnetic b,

and electric E fields. These power spectra reveal several
features commonly observed in space plasmas and that are
shown in Fig. 1(b). As observed in solar wind turbulence
[6], the large scale activity is essentially incompressible,
namely jnkj2 is negligible for low k’s [6]. The Alfvénic
correlation between the magnetic and the velocity field,
typical of magnetohydrodynamic turbulence, is broken at
kdi ! 1 [10,16]. At small scales, comparable or smaller
than di, the spectra become steeper, due mainly to the
presence of kinetic effects. As in previous works
[7,10,16], it is worth noting that the electric activity at
higher k’s is more intense than the magnetic one.
The concentration of current in sheetlike structures,

observed in Fig. 1, suggests that also kinetic effects may
nuzzle locally as well. To get more insight in this intriguing
phenomenon, we will quantify kinetic effects looking
directly at the high-order velocity moments of the DF.

TABLE I. Initial amount of magnetic fluctuations (second
column), system size (third column), and time of the peak of
the turbulent activity (last column).

%b=B0 L0=di &? ð!"1
ci Þ

Run I 1=7 2"* 30 150
Run II 1=3 2"* 20 50
Run III 1=3 2"* 10 20

FIG. 1 (color online). (a) Shaded contours (zoom) of jz to-
gether with az (isolines) and its X points (black crosses).
(b) Power spectra of ion density (green dotted), ion bulk velocity
(red dashed), magnetic field (black solid), and electric field (dot-
dashed blue). The Kolmogorov expectation k"5=3 (gray dashed)
is reported as a reference, while the vertical dashed line repre-
sents the ion skin depth wave number.
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Figure 1: Trajectories of test-particle protons interacting with a spectrum of randomly
phased AWs and KAWs for different values of the stochasticity parameter δ defined
in (2.21).

shown in the right panel of figure 1, δ = 0.15, and the proton trajectory is more disordered
or random.
We now consider the third term on the right-hand side of (2.14). The instantaneous

value of this term is comparable to the instantaneous value of the second term given (2.9)
and (2.16), but the third term is less effective at causing guiding-center displacements
over time for the following reason. Because of (2.7), the time t∥ required for v∥ to change
by a factor of order unity is ≫ Ω−1. If we integrate the third term on the right-hand side
of (2.14) from t = 0 to t = tf , where Ω−1 ≪ tf ≪ t∥, we can treat v∥ as approximately
constant in (2.14), obtaining

∫ tf

0

v∥
Ω
b̂×

db̂

dt
dt =

v∥
Ω0

B0

B0
×∆b̂ (2.22)

to leading order in δBρ/B0, where Ω0 = qB0/mc and ∆b̂ = b̂(tf) − b̂(0) is the change
in b̂. There is, however, no secular change in the value of b̂ at the proton’s location;
the magnetic-field unit vector merely undergoes small-amplitude fluctuations about
the direction of the background magnetic field. Thus, over time, the guiding-center
displacements caused by the third term on the right-hand side of (2.14) are largely
reversible and tend to cancel out. The third term is thus less effective than the second
term at making proton orbits stochastic.
When the stochasticity parameter δ defined in (2.21) exceeds some threshold, the

motion of a thermal proton’s guiding center in the plane perpendicular toB0 is reasonably
approximated by a random walk. To estimate the time step of this random walk, we begin
by defining the cyclotron average of (dR/dt)⊥,

vR(t) ≡
Ω

2π

∫ t+π/Ω

t−π/Ω

(

dR

dt1

)

⊥

dt1. (2.23)

As stated above, during a single cyclotron period a proton’s motion projected onto
the plane perpendicular to B0 carries the proton through an order-unity number of
uncorrelated gyroscale AW/KAW “eddies.” For simplicity, we take the amplitude and
direction of each vector term on the right-hand side of (2.14) to be approximately constant
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What about instabilities?



Role of instabilities

Howes Phil Trans A (2015)

DRIVE Center for Kinetic Heliophysics Confidential4

long-standing questions in heliophysics, such as the heating of the solar corona to millions of Kelvin 
above photospheric temperatures and the launching of the solar wind outward through the heliosphere.
2.2 Phase II Research Goals – The availability of unprecedented, high-cadence spacecraft observations 
and concurrent enhancements in supercomputing that enable the kinetic simulation of turbulent particle 
energization together set the stage for making major advances in the next decade on the multiscale 
physics of heliospheric plasma turbulence. This new opportunity has inspired the Vision Statement, pri-
mary Science Objectives, and Deliverables over the full Phase I and II lifetimes of the DRIVE Center for 
Kinetic Heliophysics, given in Table 1.

In heliospheric turbulence, nonlinear interactions mediate a local (in scale) cascade of energy down 
to small, kinetic length scales at which the turbulent fluctuations can energize the ions and electrons 
(Fig. 2). Science Objective I aims to identify and quantify the kinetic physical mechanisms governing 
the turbulent energization of particles, over the parameter range (dashed box) indicated in Fig. 1, to pro-
vide the foundation needed to answer fundamental heliophysics questions: (i) What drives the observed 
non-adiabatic heating of the solar wind in the inner heliosphere? and (ii) What leads to heating of the 
solar corona?

Complicating this picture of the turbulent cascade, the weakly collisional conditions in the solar 
corona, solar wind, and planetary magnetospheres allow the plasma to deviate significantly from a state 
of local thermodynamic equilibrium, involving kinetic physics that cannot be studied directly with fluid 
models. These departures can drive instabilities that transfer energy nonlocally from the large-scale 
motions directly down to smaller kinetic length and time scales, as depicted by the red arrows in Fig. 2. 

DRIVE Center for Kinetic Heliophysics

Vision Statement: To understand how the multiscale physics of plasma turbulence governs the flow of energy that energizes 
particles and heats the plasma in the solar corona, inner heliosphere, and Earth’s magnetosphere.

Science Objectives
I. Identify and diagnose the dominant particle energization mechanisms in turbulent

heliospheric plasmas

II. Discover how unstable conditions generate and impact the turbulent cascade of energy

Table 1: Vision Statement, Science Objectives, and Deliverables over the full Phase I and II lifetimes.

Figure 2: (a) Schematic diagram of the turbulent magnetic-energy spectrum in the solar wind, depicting 
the local transfer of energy from large scales (small wavenumbers k) to small scales (large k) through 
a turbulent cascade (black arrows). Instabilities alter this energy flow by nonlocally transporting energy 
directly to small, kinetic scales (red arrow). (b) In wavevector space, the local transfer of the Alfvénic 
turbulent cascade follows the anisotropic, critically balanced path. Modified from Howes (2015)8.

B. Quantify the mechanisms of turbulent particle energization as a function of key parameters 

A. Develop the first phase diagram of plasma turbulence
Deliverables
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Entropy cascade [Schekochihin et al (2009)]
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Figure 10. Nonlinear perpendicular phase-mixing mechanism: the gyrocenter
distribution function at Ri of particles with velocities v⊥ and v′⊥ is mixed by
turbulent fluctuations of the potential Φ (E × B flows) averaged over particle
orbits separated by a distance greater than the correlation length of Φ.

The condition (251) means that the collision rate can be
arbitrarily small—this will always be compensated by the
sufficiently fine velocity-space structure of the distribution
function to produce a finite amount of entropy production
(heating) independent of νii in the limit νii → +0. The situation
bears some resemblance to the emergence of small spatial
scales in neutral-fluid turbulence with arbitrarily small but non-
zero viscosity (Kolmogorov 1941). The analogy is not perfect,
however, because the ion gyrokinetic Equation (249) does not
contain a nonlinear interaction term that would explicitly cause a
cascade in the velocity space. Instead, the (ring-averaged) KAW
turbulence mixes hi in the gyrocenter space via the nonlinear
term in Equation (249), so hi will have small-scale structure in Ri

on characteristic scales much smaller than ρi . Let us assume that
the dominant nonlinear effect is a local interaction of the small-
scale fluctuations of hi with the similarly small-scale component
of ⟨Φ⟩Ri

. Since ring averaging is involved and k⊥ρi is large, the
values of ⟨Φ⟩Ri

corresponding to two velocities v and v′ will
come from spatially decorrelated electromagnetic fluctuations
if k⊥v⊥/Ωi and k⊥v′⊥/Ωi (the argument of the Bessel function
in Equation (247)) differ by order unity, i.e., for

δv⊥

vthi

= |v⊥ − v′⊥|
vthi

∼ 1
k⊥ρi

(252)

(see Figure 10). This relation gives a correspondence between
the decorrelation scales of hi in the position and velocity space.
Combining Equations (252) and (251), we see that there is a
collisional cutoff scale determined by k⊥ρi ∼ (ω/νii)1/2 ≫ 1.32

The cutoff scale is much smaller than the ion gyroscale. In the
range between these scales, collisional dissipation is small. The
ion entropy fluctuations are transferred across this scale range
by means of a cascade, for which we will construct a scaling
theory in Section 7.9.2 (and, for the case without the background
KAW turbulence, in Section 7.10).

It is important to emphasize that no matter how small the col-
lisional cutoff scale is, all of the generalized energy channeled
into the entropy cascade at the ion gyroscale eventually reaches
it and is converted into heat. Note that the rate at which this
happens is in general amplitude-dependent because the process

32 Another source of small-scale spatial smoothing comes from the
perpendicular gyrocenter-diffusion terms ∼ − νii (v/vthi )2k2

⊥ρ
2
i hik that arise in

the ring-averaged collision operators, e.g., the second term in the model
operator (B13). These terms again enforce a cutoff wavenumber such that
k⊥ρi ∼ (ω/νii )1/2 ≫ 1.

is nonlinear, although we will argue in Section 7.9.4 (see also
Section 7.10.3) that the nonlinear cascade time and the paral-
lel linear propagation (particle streaming) time are related by a
critical-balance-like condition (we will also argue there that the
linear parallel phase mixing, which can generate small scales in
v∥, is a less efficient process than the nonlinear perpendicular
one discussed above).

It is interesting to note the connection between the entropy
cascade and certain aspects of the gyrofluid closure formalism
developed by Dorland & Hammett (1993). In their theory,
the emergence of small scales in v⊥ manifested itself as the
growth of high-order v⊥ moments of the gyrocenter distribution
function. They correctly identified this effect as a consequence
of the nonlinear perpendicular phase mixing of the gyrocenter
distribution function caused by a perpendicular-velocity-space
spread in the ring-averaged E×B velocities (given by ⟨uE⟩Ri

=
ẑ × ∇⟨Φ⟩Ri

in our notation) arising at and below the ion
gyroscale.

7.9.2. Scalings

Since entropy is a conserved quantity, we will follow the well
trodden Kolmogorov path, assume locality of interactions in
scale space and constant entropy flux, and conclude, analogously
to Equation (1),

v8
thi

n2
0i

h2
iλ

τhλ
∼ εh = const, (253)

where εh is the entropy flux proportional to the fraction of
the total turbulent power ε (or Pext; see Section 3.4) that was
diverted into the entropy cascade at the ion gyroscale, and τhλ
is the cascade time that we now need to find.

By the critical-balance assumption, the decorrelation time
of the electromagnetic fluctuations in KAW turbulence is
comparable at each scale to the KAW period at that scale and to
the nonlinear interaction time (Equation (239)):

τKAWλ ∼
λ2

Φλ

∼
(

ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

− 2/3
i λ4/3

vA

. (254)

The characteristic time associated with the nonlinear term in
Equation (249) is longer than τKAWλ by a factor of (ρi/λ)1/2 due
to the ring averaging, which reduces the strength of the nonlinear
interaction. This weakness of the nonlinearity makes it possible
to develop a systematic analytical theory of the entropy cascade
(Schekochihin & Cowley 2009). It is also possible to estimate
the cascade time τhλ via a more qualitative argument analogous
to that first devised by Kraichnan (1965) for the weak turbulence
of Alfvén waves: during each KAW correlation time τKAWλ, the
nonlinearity changes the amplitude of hi by only a small amount:

∆hiλ ∼ (λ/ρi)1/2hiλ ≪ hiλ; (255)

these changes accumulate with time as a random walk, so after
time t, the cumulative change in amplitude is ∆hiλ(t/τKAWλ)1/2;
finally, the cascade time t = τhλ is the time after which the
cumulative change in amplitude is comparable to the amplitude
itself, which gives, using Equation (254),

τhλ ∼
ρi

λ
τKAWλ ∼

(
ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

1/3
i λ1/3

vA

. (256)
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Figure 10. Nonlinear perpendicular phase-mixing mechanism: the gyrocenter
distribution function at Ri of particles with velocities v⊥ and v′⊥ is mixed by
turbulent fluctuations of the potential Φ (E × B flows) averaged over particle
orbits separated by a distance greater than the correlation length of Φ.

The condition (251) means that the collision rate can be
arbitrarily small—this will always be compensated by the
sufficiently fine velocity-space structure of the distribution
function to produce a finite amount of entropy production
(heating) independent of νii in the limit νii → +0. The situation
bears some resemblance to the emergence of small spatial
scales in neutral-fluid turbulence with arbitrarily small but non-
zero viscosity (Kolmogorov 1941). The analogy is not perfect,
however, because the ion gyrokinetic Equation (249) does not
contain a nonlinear interaction term that would explicitly cause a
cascade in the velocity space. Instead, the (ring-averaged) KAW
turbulence mixes hi in the gyrocenter space via the nonlinear
term in Equation (249), so hi will have small-scale structure in Ri

on characteristic scales much smaller than ρi . Let us assume that
the dominant nonlinear effect is a local interaction of the small-
scale fluctuations of hi with the similarly small-scale component
of ⟨Φ⟩Ri

. Since ring averaging is involved and k⊥ρi is large, the
values of ⟨Φ⟩Ri

corresponding to two velocities v and v′ will
come from spatially decorrelated electromagnetic fluctuations
if k⊥v⊥/Ωi and k⊥v′⊥/Ωi (the argument of the Bessel function
in Equation (247)) differ by order unity, i.e., for

δv⊥

vthi

= |v⊥ − v′⊥|
vthi

∼ 1
k⊥ρi

(252)

(see Figure 10). This relation gives a correspondence between
the decorrelation scales of hi in the position and velocity space.
Combining Equations (252) and (251), we see that there is a
collisional cutoff scale determined by k⊥ρi ∼ (ω/νii)1/2 ≫ 1.32

The cutoff scale is much smaller than the ion gyroscale. In the
range between these scales, collisional dissipation is small. The
ion entropy fluctuations are transferred across this scale range
by means of a cascade, for which we will construct a scaling
theory in Section 7.9.2 (and, for the case without the background
KAW turbulence, in Section 7.10).

It is important to emphasize that no matter how small the col-
lisional cutoff scale is, all of the generalized energy channeled
into the entropy cascade at the ion gyroscale eventually reaches
it and is converted into heat. Note that the rate at which this
happens is in general amplitude-dependent because the process

32 Another source of small-scale spatial smoothing comes from the
perpendicular gyrocenter-diffusion terms ∼ − νii (v/vthi )2k2

⊥ρ
2
i hik that arise in

the ring-averaged collision operators, e.g., the second term in the model
operator (B13). These terms again enforce a cutoff wavenumber such that
k⊥ρi ∼ (ω/νii )1/2 ≫ 1.

is nonlinear, although we will argue in Section 7.9.4 (see also
Section 7.10.3) that the nonlinear cascade time and the paral-
lel linear propagation (particle streaming) time are related by a
critical-balance-like condition (we will also argue there that the
linear parallel phase mixing, which can generate small scales in
v∥, is a less efficient process than the nonlinear perpendicular
one discussed above).

It is interesting to note the connection between the entropy
cascade and certain aspects of the gyrofluid closure formalism
developed by Dorland & Hammett (1993). In their theory,
the emergence of small scales in v⊥ manifested itself as the
growth of high-order v⊥ moments of the gyrocenter distribution
function. They correctly identified this effect as a consequence
of the nonlinear perpendicular phase mixing of the gyrocenter
distribution function caused by a perpendicular-velocity-space
spread in the ring-averaged E×B velocities (given by ⟨uE⟩Ri

=
ẑ × ∇⟨Φ⟩Ri

in our notation) arising at and below the ion
gyroscale.

7.9.2. Scalings

Since entropy is a conserved quantity, we will follow the well
trodden Kolmogorov path, assume locality of interactions in
scale space and constant entropy flux, and conclude, analogously
to Equation (1),

v8
thi

n2
0i

h2
iλ

τhλ
∼ εh = const, (253)

where εh is the entropy flux proportional to the fraction of
the total turbulent power ε (or Pext; see Section 3.4) that was
diverted into the entropy cascade at the ion gyroscale, and τhλ
is the cascade time that we now need to find.

By the critical-balance assumption, the decorrelation time
of the electromagnetic fluctuations in KAW turbulence is
comparable at each scale to the KAW period at that scale and to
the nonlinear interaction time (Equation (239)):

τKAWλ ∼
λ2

Φλ

∼
(

ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

− 2/3
i λ4/3

vA

. (254)

The characteristic time associated with the nonlinear term in
Equation (249) is longer than τKAWλ by a factor of (ρi/λ)1/2 due
to the ring averaging, which reduces the strength of the nonlinear
interaction. This weakness of the nonlinearity makes it possible
to develop a systematic analytical theory of the entropy cascade
(Schekochihin & Cowley 2009). It is also possible to estimate
the cascade time τhλ via a more qualitative argument analogous
to that first devised by Kraichnan (1965) for the weak turbulence
of Alfvén waves: during each KAW correlation time τKAWλ, the
nonlinearity changes the amplitude of hi by only a small amount:

∆hiλ ∼ (λ/ρi)1/2hiλ ≪ hiλ; (255)

these changes accumulate with time as a random walk, so after
time t, the cumulative change in amplitude is ∆hiλ(t/τKAWλ)1/2;
finally, the cascade time t = τhλ is the time after which the
cumulative change in amplitude is comparable to the amplitude
itself, which gives, using Equation (254),

τhλ ∼
ρi

λ
τKAWλ ∼

(
ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

1/3
i λ1/3

vA

. (256)
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Substituting this into Equation (253), we get

hiλ ∼
n0i

v3
thi

(
εh

ε

)1/2 (
ε

εKAW

)1/6 (1 + βi)1/6

√
βi

l
−1/3
0 ρ

1/6
i λ1/6,

(257)
which corresponds to a k

−4/3
⊥ spectrum of entropy.

In the argument presented above, we assumed that the scaling
of hi was determined by the nonlinear mixing of hi by the ring-
averaged KAW fluctuations rather than by the wave–particle-
interaction term on the right-hand side of Equation (249). We
can now confirm the validity of this assumption. The change in
amplitude of hi in one KAW correlation time τKAWλ due to the
wave–particle-interaction term is

∆hiλ ∼
n0i

v3
thi

(
λ

ρi

)1/2 Φλ√
βi ρivA

∼ n0i

v3
thi

(εKAW

ε

)1/3 1√
βi (1 + βi)1/3

l
−1/3
0 ρ

−5/6
i λ7/6, (258)

where we have used Equation (240). Comparing this with
Equation (255) and using Equation (257), we see that ∆hiλ

in Equation (258) is a factor of (λ/ρi)1/2 smaller than ∆hiλ due
to the nonlinear mixing.

7.9.3. Phase-Space Cutoff

To work out the cutoff scales both in the position and velocity
space, we use Equations (251) and (252): in Equation (251),
ω ∼ 1/τhλ, where τhλ is the characteristic decorrelation time of
hi given by Equation (256); using Equation (252), we find the
cutoffs:

δv⊥

vthi

∼ 1
k⊥ρi

∼ (νiiτρi
)3/5 = Do−3/5, (259)

where τρi
is the cascade time (Equation (256)) taken at λ = ρi .

By a recently established convention, the dimensionless number
Do = 1/νiiτρi

is called the Dorland number. It plays the
role of Reynolds number for kinetic turbulence, measuring the
scale separation between the ion gyroscale and the collisional
dissipation scale (Schekochihin et al. 2008b; Tatsuno et al.
2009a, 2009b).

7.9.4. Parallel Phase Mixing

Another assumption, which was made implicitly, was that
the parallel phase mixing due to the second term on the left-
hand side of Equation (249) could be ignored. This requires
justification, especially because it is with this “ballistic” term
that one traditionally associates the emergence of small-scale
structure in the velocity space (e.g., Krommes & Hu 1994;
Krommes 1999; Watanabe & Sugama 2004). The effect of the
parallel phase mixing is to produce small scales in velocity
space δv∥ ∼ 1/k∥t . Let us assume that the KAW turbulence
imparts its parallel decorrelation scale to hi and use the scaling
relation (241) to estimate k∥ ∼ l−1

∥λ . Then, after one cascade time
τhλ (Equation (256)), hi is decorrelated on the parallel velocity
scales

δv∥

vthi

∼ l∥λ

vthiτhλ
∼ 1√

βi(1 + βi)
∼ 1. (260)

We conclude that the nonlinear perpendicular phase mixing
(Equation (259)) is more efficient than the linear parallel
one. Note that up to a βi-dependent factor Equation (260) is
equivalent to a critical-balance-like assumption for hi in the

sense that the propagation time is comparable to the cascade
time, or k∥v∥ ∼ τ−1

hλ (see Equation (249)).

7.10. Entropy Cascade in the Absence of KAW Turbulence

It is not currently known how one might determine analyt-
ically what fraction of the turbulent power arriving from the
inertial range to the ion gyroscale is channeled into the KAW
cascade and what fraction is dissipated via the kinetic ion-
entropy cascade introduced in Section 7.9 (perhaps it can only
be determined by direct numerical simulations). It is certainly a
fact that in many solar-wind measurements, the relatively shal-
low magnetic-energy spectra associated with the KAW cascade
(Section 7.5) fail to appear and much steeper spectra are de-
tected (close to k−4; see Leamon et al. 1998; Smith et al. 2006).
In view of this evidence, it is interesting to ask what would be the
nature of electromagnetic fluctuations below the ion gyroscale
if the KAW cascade failed to be launched, i.e., if all (or most) of
the turbulent power were directed into the entropy cascade (i.e.,
if W ≃ Whi

in Section 7.8).

7.10.1. Equations

It is again possible to derive a closed set of equations for all
fluctuating quantities.

Let us assume (and verify a posteriori; Section 7.10.4) that the
characteristic frequency of such fluctuations is much lower than
the KAW frequency (Equation (230)) so that the first term in
Equation (116) is small and the equation reduces to the balance
of the other two terms. This gives

δne

n0e

= eϕ

T0e

, (261)

meaning that the electrons are purely Boltzmann (he = 0 to
lowest order; see Equation (101)). Then, from Equation (118),

Zeϕ

T0i

≡ 2Φ
ρivthi

=
(

1 +
τ

Z

)−1 ∑

k

eik·r 1
n0i

∫
d 3v J0(ai)hik

(262)
Using Equation (262), we find from Equation (120) that the

field-strength fluctuations are

δB∥

B0
= −βi

2

∑

k

eik·r 1
n0i

∫
d 3v

2v2
⊥

v2
thi

J1(ai)
ai

hik, (263)

which is smaller than Zeϕ/T0i by a factor of βi/k⊥ρi .
Therefore, we can neglect δB∥/B0 compared to δne/n0e in

Equation (117). Using Equation (261), we get what is physically
the electron continuity equation:

∂

∂t

eϕ

T0e

+ b̂ · ∇
(

c

4πen0e

∇2
⊥A∥ + u∥i

)
= 0, (264)

u∥i =
∑

k

eik·r 1
n0i

∫
d 3v v∥J0(ai)hik. (265)

Note that in terms of the stream and flux functions, Equa-
tion (264) takes the form

∂

∂z
ρ2

i ∇2
⊥Ψ =

√
βi

(
2τ
Z

1
vthi

∂Φ
∂t

+ ρi

∂u∥i

∂z

)
, (266)

where we have approximated b̂ ·∇ ≃ ∂/∂z, which will, indeed,
be shown to be correct in Section 7.10.4.
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Figure 10. Nonlinear perpendicular phase-mixing mechanism: the gyrocenter
distribution function at Ri of particles with velocities v⊥ and v′⊥ is mixed by
turbulent fluctuations of the potential Φ (E × B flows) averaged over particle
orbits separated by a distance greater than the correlation length of Φ.

The condition (251) means that the collision rate can be
arbitrarily small—this will always be compensated by the
sufficiently fine velocity-space structure of the distribution
function to produce a finite amount of entropy production
(heating) independent of νii in the limit νii → +0. The situation
bears some resemblance to the emergence of small spatial
scales in neutral-fluid turbulence with arbitrarily small but non-
zero viscosity (Kolmogorov 1941). The analogy is not perfect,
however, because the ion gyrokinetic Equation (249) does not
contain a nonlinear interaction term that would explicitly cause a
cascade in the velocity space. Instead, the (ring-averaged) KAW
turbulence mixes hi in the gyrocenter space via the nonlinear
term in Equation (249), so hi will have small-scale structure in Ri

on characteristic scales much smaller than ρi . Let us assume that
the dominant nonlinear effect is a local interaction of the small-
scale fluctuations of hi with the similarly small-scale component
of ⟨Φ⟩Ri

. Since ring averaging is involved and k⊥ρi is large, the
values of ⟨Φ⟩Ri

corresponding to two velocities v and v′ will
come from spatially decorrelated electromagnetic fluctuations
if k⊥v⊥/Ωi and k⊥v′⊥/Ωi (the argument of the Bessel function
in Equation (247)) differ by order unity, i.e., for

δv⊥

vthi

= |v⊥ − v′⊥|
vthi

∼ 1
k⊥ρi

(252)

(see Figure 10). This relation gives a correspondence between
the decorrelation scales of hi in the position and velocity space.
Combining Equations (252) and (251), we see that there is a
collisional cutoff scale determined by k⊥ρi ∼ (ω/νii)1/2 ≫ 1.32

The cutoff scale is much smaller than the ion gyroscale. In the
range between these scales, collisional dissipation is small. The
ion entropy fluctuations are transferred across this scale range
by means of a cascade, for which we will construct a scaling
theory in Section 7.9.2 (and, for the case without the background
KAW turbulence, in Section 7.10).

It is important to emphasize that no matter how small the col-
lisional cutoff scale is, all of the generalized energy channeled
into the entropy cascade at the ion gyroscale eventually reaches
it and is converted into heat. Note that the rate at which this
happens is in general amplitude-dependent because the process

32 Another source of small-scale spatial smoothing comes from the
perpendicular gyrocenter-diffusion terms ∼ − νii (v/vthi )2k2

⊥ρ
2
i hik that arise in

the ring-averaged collision operators, e.g., the second term in the model
operator (B13). These terms again enforce a cutoff wavenumber such that
k⊥ρi ∼ (ω/νii )1/2 ≫ 1.

is nonlinear, although we will argue in Section 7.9.4 (see also
Section 7.10.3) that the nonlinear cascade time and the paral-
lel linear propagation (particle streaming) time are related by a
critical-balance-like condition (we will also argue there that the
linear parallel phase mixing, which can generate small scales in
v∥, is a less efficient process than the nonlinear perpendicular
one discussed above).

It is interesting to note the connection between the entropy
cascade and certain aspects of the gyrofluid closure formalism
developed by Dorland & Hammett (1993). In their theory,
the emergence of small scales in v⊥ manifested itself as the
growth of high-order v⊥ moments of the gyrocenter distribution
function. They correctly identified this effect as a consequence
of the nonlinear perpendicular phase mixing of the gyrocenter
distribution function caused by a perpendicular-velocity-space
spread in the ring-averaged E×B velocities (given by ⟨uE⟩Ri

=
ẑ × ∇⟨Φ⟩Ri

in our notation) arising at and below the ion
gyroscale.

7.9.2. Scalings

Since entropy is a conserved quantity, we will follow the well
trodden Kolmogorov path, assume locality of interactions in
scale space and constant entropy flux, and conclude, analogously
to Equation (1),

v8
thi

n2
0i

h2
iλ

τhλ
∼ εh = const, (253)

where εh is the entropy flux proportional to the fraction of
the total turbulent power ε (or Pext; see Section 3.4) that was
diverted into the entropy cascade at the ion gyroscale, and τhλ
is the cascade time that we now need to find.

By the critical-balance assumption, the decorrelation time
of the electromagnetic fluctuations in KAW turbulence is
comparable at each scale to the KAW period at that scale and to
the nonlinear interaction time (Equation (239)):

τKAWλ ∼
λ2

Φλ

∼
(

ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

− 2/3
i λ4/3

vA

. (254)

The characteristic time associated with the nonlinear term in
Equation (249) is longer than τKAWλ by a factor of (ρi/λ)1/2 due
to the ring averaging, which reduces the strength of the nonlinear
interaction. This weakness of the nonlinearity makes it possible
to develop a systematic analytical theory of the entropy cascade
(Schekochihin & Cowley 2009). It is also possible to estimate
the cascade time τhλ via a more qualitative argument analogous
to that first devised by Kraichnan (1965) for the weak turbulence
of Alfvén waves: during each KAW correlation time τKAWλ, the
nonlinearity changes the amplitude of hi by only a small amount:

∆hiλ ∼ (λ/ρi)1/2hiλ ≪ hiλ; (255)

these changes accumulate with time as a random walk, so after
time t, the cumulative change in amplitude is ∆hiλ(t/τKAWλ)1/2;
finally, the cascade time t = τhλ is the time after which the
cumulative change in amplitude is comparable to the amplitude
itself, which gives, using Equation (254),

τhλ ∼
ρi

λ
τKAWλ ∼

(
ε

εKAW

)1/3

(1 + βi)1/3 l
1/3
0 ρ

1/3
i λ1/3

vA
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Substituting this into Equation (253), we get

hiλ ∼
n0i

v3
thi

(
εh

ε

)1/2 (
ε

εKAW

)1/6 (1 + βi)1/6

√
βi

l
−1/3
0 ρ

1/6
i λ1/6,

(257)
which corresponds to a k

−4/3
⊥ spectrum of entropy.

In the argument presented above, we assumed that the scaling
of hi was determined by the nonlinear mixing of hi by the ring-
averaged KAW fluctuations rather than by the wave–particle-
interaction term on the right-hand side of Equation (249). We
can now confirm the validity of this assumption. The change in
amplitude of hi in one KAW correlation time τKAWλ due to the
wave–particle-interaction term is

∆hiλ ∼
n0i

v3
thi

(
λ

ρi

)1/2 Φλ√
βi ρivA

∼ n0i

v3
thi

(εKAW

ε

)1/3 1√
βi (1 + βi)1/3

l
−1/3
0 ρ

−5/6
i λ7/6, (258)

where we have used Equation (240). Comparing this with
Equation (255) and using Equation (257), we see that ∆hiλ

in Equation (258) is a factor of (λ/ρi)1/2 smaller than ∆hiλ due
to the nonlinear mixing.

7.9.3. Phase-Space Cutoff

To work out the cutoff scales both in the position and velocity
space, we use Equations (251) and (252): in Equation (251),
ω ∼ 1/τhλ, where τhλ is the characteristic decorrelation time of
hi given by Equation (256); using Equation (252), we find the
cutoffs:

δv⊥

vthi

∼ 1
k⊥ρi

∼ (νiiτρi
)3/5 = Do−3/5, (259)

where τρi
is the cascade time (Equation (256)) taken at λ = ρi .

By a recently established convention, the dimensionless number
Do = 1/νiiτρi

is called the Dorland number. It plays the
role of Reynolds number for kinetic turbulence, measuring the
scale separation between the ion gyroscale and the collisional
dissipation scale (Schekochihin et al. 2008b; Tatsuno et al.
2009a, 2009b).

7.9.4. Parallel Phase Mixing

Another assumption, which was made implicitly, was that
the parallel phase mixing due to the second term on the left-
hand side of Equation (249) could be ignored. This requires
justification, especially because it is with this “ballistic” term
that one traditionally associates the emergence of small-scale
structure in the velocity space (e.g., Krommes & Hu 1994;
Krommes 1999; Watanabe & Sugama 2004). The effect of the
parallel phase mixing is to produce small scales in velocity
space δv∥ ∼ 1/k∥t . Let us assume that the KAW turbulence
imparts its parallel decorrelation scale to hi and use the scaling
relation (241) to estimate k∥ ∼ l−1

∥λ . Then, after one cascade time
τhλ (Equation (256)), hi is decorrelated on the parallel velocity
scales

δv∥

vthi

∼ l∥λ

vthiτhλ
∼ 1√

βi(1 + βi)
∼ 1. (260)

We conclude that the nonlinear perpendicular phase mixing
(Equation (259)) is more efficient than the linear parallel
one. Note that up to a βi-dependent factor Equation (260) is
equivalent to a critical-balance-like assumption for hi in the

sense that the propagation time is comparable to the cascade
time, or k∥v∥ ∼ τ−1

hλ (see Equation (249)).

7.10. Entropy Cascade in the Absence of KAW Turbulence

It is not currently known how one might determine analyt-
ically what fraction of the turbulent power arriving from the
inertial range to the ion gyroscale is channeled into the KAW
cascade and what fraction is dissipated via the kinetic ion-
entropy cascade introduced in Section 7.9 (perhaps it can only
be determined by direct numerical simulations). It is certainly a
fact that in many solar-wind measurements, the relatively shal-
low magnetic-energy spectra associated with the KAW cascade
(Section 7.5) fail to appear and much steeper spectra are de-
tected (close to k−4; see Leamon et al. 1998; Smith et al. 2006).
In view of this evidence, it is interesting to ask what would be the
nature of electromagnetic fluctuations below the ion gyroscale
if the KAW cascade failed to be launched, i.e., if all (or most) of
the turbulent power were directed into the entropy cascade (i.e.,
if W ≃ Whi

in Section 7.8).

7.10.1. Equations

It is again possible to derive a closed set of equations for all
fluctuating quantities.

Let us assume (and verify a posteriori; Section 7.10.4) that the
characteristic frequency of such fluctuations is much lower than
the KAW frequency (Equation (230)) so that the first term in
Equation (116) is small and the equation reduces to the balance
of the other two terms. This gives

δne

n0e

= eϕ

T0e

, (261)

meaning that the electrons are purely Boltzmann (he = 0 to
lowest order; see Equation (101)). Then, from Equation (118),

Zeϕ

T0i

≡ 2Φ
ρivthi

=
(

1 +
τ

Z

)−1 ∑

k

eik·r 1
n0i

∫
d 3v J0(ai)hik

(262)
Using Equation (262), we find from Equation (120) that the

field-strength fluctuations are

δB∥

B0
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2
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k

eik·r 1
n0i

∫
d 3v

2v2
⊥

v2
thi

J1(ai)
ai

hik, (263)

which is smaller than Zeϕ/T0i by a factor of βi/k⊥ρi .
Therefore, we can neglect δB∥/B0 compared to δne/n0e in

Equation (117). Using Equation (261), we get what is physically
the electron continuity equation:

∂

∂t

eϕ

T0e

+ b̂ · ∇
(

c

4πen0e

∇2
⊥A∥ + u∥i

)
= 0, (264)

u∥i =
∑

k

eik·r 1
n0i

∫
d 3v v∥J0(ai)hik. (265)

Note that in terms of the stream and flux functions, Equa-
tion (264) takes the form

∂

∂z
ρ2

i ∇2
⊥Ψ =

√
βi

(
2τ
Z

1
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∂Φ
∂t

+ ρi

∂u∥i

∂z

)
, (266)

where we have approximated b̂ ·∇ ≃ ∂/∂z, which will, indeed,
be shown to be correct in Section 7.10.4.
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Substituting this into Equation (253), we get

hiλ ∼
n0i

v3
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(
εh

ε

)1/2 (
ε

εKAW

)1/6 (1 + βi)1/6

√
βi
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−1/3
0 ρ

1/6
i λ1/6,

(257)
which corresponds to a k

−4/3
⊥ spectrum of entropy.

In the argument presented above, we assumed that the scaling
of hi was determined by the nonlinear mixing of hi by the ring-
averaged KAW fluctuations rather than by the wave–particle-
interaction term on the right-hand side of Equation (249). We
can now confirm the validity of this assumption. The change in
amplitude of hi in one KAW correlation time τKAWλ due to the
wave–particle-interaction term is

∆hiλ ∼
n0i

v3
thi

(
λ

ρi

)1/2 Φλ√
βi ρivA

∼ n0i

v3
thi

(εKAW
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)1/3 1√
βi (1 + βi)1/3

l
−1/3
0 ρ

−5/6
i λ7/6, (258)

where we have used Equation (240). Comparing this with
Equation (255) and using Equation (257), we see that ∆hiλ

in Equation (258) is a factor of (λ/ρi)1/2 smaller than ∆hiλ due
to the nonlinear mixing.

7.9.3. Phase-Space Cutoff

To work out the cutoff scales both in the position and velocity
space, we use Equations (251) and (252): in Equation (251),
ω ∼ 1/τhλ, where τhλ is the characteristic decorrelation time of
hi given by Equation (256); using Equation (252), we find the
cutoffs:

δv⊥

vthi

∼ 1
k⊥ρi

∼ (νiiτρi
)3/5 = Do−3/5, (259)

where τρi
is the cascade time (Equation (256)) taken at λ = ρi .

By a recently established convention, the dimensionless number
Do = 1/νiiτρi

is called the Dorland number. It plays the
role of Reynolds number for kinetic turbulence, measuring the
scale separation between the ion gyroscale and the collisional
dissipation scale (Schekochihin et al. 2008b; Tatsuno et al.
2009a, 2009b).

7.9.4. Parallel Phase Mixing

Another assumption, which was made implicitly, was that
the parallel phase mixing due to the second term on the left-
hand side of Equation (249) could be ignored. This requires
justification, especially because it is with this “ballistic” term
that one traditionally associates the emergence of small-scale
structure in the velocity space (e.g., Krommes & Hu 1994;
Krommes 1999; Watanabe & Sugama 2004). The effect of the
parallel phase mixing is to produce small scales in velocity
space δv∥ ∼ 1/k∥t . Let us assume that the KAW turbulence
imparts its parallel decorrelation scale to hi and use the scaling
relation (241) to estimate k∥ ∼ l−1

∥λ . Then, after one cascade time
τhλ (Equation (256)), hi is decorrelated on the parallel velocity
scales

δv∥

vthi

∼ l∥λ

vthiτhλ
∼ 1√

βi(1 + βi)
∼ 1. (260)

We conclude that the nonlinear perpendicular phase mixing
(Equation (259)) is more efficient than the linear parallel
one. Note that up to a βi-dependent factor Equation (260) is
equivalent to a critical-balance-like assumption for hi in the

sense that the propagation time is comparable to the cascade
time, or k∥v∥ ∼ τ−1

hλ (see Equation (249)).

7.10. Entropy Cascade in the Absence of KAW Turbulence

It is not currently known how one might determine analyt-
ically what fraction of the turbulent power arriving from the
inertial range to the ion gyroscale is channeled into the KAW
cascade and what fraction is dissipated via the kinetic ion-
entropy cascade introduced in Section 7.9 (perhaps it can only
be determined by direct numerical simulations). It is certainly a
fact that in many solar-wind measurements, the relatively shal-
low magnetic-energy spectra associated with the KAW cascade
(Section 7.5) fail to appear and much steeper spectra are de-
tected (close to k−4; see Leamon et al. 1998; Smith et al. 2006).
In view of this evidence, it is interesting to ask what would be the
nature of electromagnetic fluctuations below the ion gyroscale
if the KAW cascade failed to be launched, i.e., if all (or most) of
the turbulent power were directed into the entropy cascade (i.e.,
if W ≃ Whi

in Section 7.8).

7.10.1. Equations

It is again possible to derive a closed set of equations for all
fluctuating quantities.

Let us assume (and verify a posteriori; Section 7.10.4) that the
characteristic frequency of such fluctuations is much lower than
the KAW frequency (Equation (230)) so that the first term in
Equation (116) is small and the equation reduces to the balance
of the other two terms. This gives

δne

n0e

= eϕ

T0e

, (261)

meaning that the electrons are purely Boltzmann (he = 0 to
lowest order; see Equation (101)). Then, from Equation (118),

Zeϕ
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≡ 2Φ
ρivthi

=
(

1 +
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)−1 ∑
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∫
d 3v J0(ai)hik

(262)
Using Equation (262), we find from Equation (120) that the

field-strength fluctuations are
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which is smaller than Zeϕ/T0i by a factor of βi/k⊥ρi .
Therefore, we can neglect δB∥/B0 compared to δne/n0e in

Equation (117). Using Equation (261), we get what is physically
the electron continuity equation:
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+ b̂ · ∇
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)
= 0, (264)

u∥i =
∑
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eik·r 1
n0i

∫
d 3v v∥J0(ai)hik. (265)

Note that in terms of the stream and flux functions, Equa-
tion (264) takes the form
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where we have approximated b̂ ·∇ ≃ ∂/∂z, which will, indeed,
be shown to be correct in Section 7.10.4.

Linear phase mixing:

Nonlinear phase mixing


