

# **Terrestrial turbulence**



# Why is turbulence important?

Turbulence plays an important role in a large variety of space, astrophysical phenomena and laboratory plasma experiments, e.g.,

- Accretion discs
- Interstellar medium
- Star-forming nebulae
- Galaxy clusters
- Solar corona and solar wind
- Fusion confinement experiments



# Why is turbulence important?

Turbulence plays an important role in a large variety of space, astrophysical phenomena and laboratory experiments, e.g.,

- Accretion discs
- Interstellar medium
- Star-forming nebulae
- Galaxy clusters
- Solar corona and solar wind
- Fusion confinement experiments

Turbulence is important because it governs the transport of

- Energy (energy flow, heating)
- Mass (mixing, accretion)
- Momentum (jet interactions, shocks)



# Accretion discs

- Matter spirals into the black hole, converting a tremendous amount of gravitational potential energy into heat
- This occurs via several processes:
  - Magnetorotational Instability (MRI) drives turbulence
  - Turbulence cascades nonlinearly to small scales
  - Kinetic mechanisms damp turbulence and lead to plasma heating

- Radiation emitted is function of plasma heating
- Interpretation of X-ray observations requires understanding of kinetic plasma turbulence and resulting plasma heating





Logarithmic density from an accretion disc simulation by Hawley (2000)

## Solar corona

- Important processes not well understood:
  - Heating of the solar corona
  - Acceleration of the solar wind

 Turbulence may play a fundamental role in heating the corona



### NASA/SDO flare observation from 2/24/2011



#### NASA/TRACE EUV movie

- Turbulence is driven by:
  - Photospheric footpoint motions
  - Magnetic reconnection







## Importance of collisions





