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Abstract
These are notes for the Thursday, June 10th, 10 am EDT lecture at

the 2021 NSF/APS-DPP GPAP Summer School. They borrow from lec-
ture notes available at https://www.astro.princeton.edu/~kunz/Site/
AST521/AST521_lecture_notes_Kunz.pdf, material in Chen’s Introduc-
tion to Plasma Physics and Controlled Fusion, available at https://link.
springer.com/book/10.1007/978-3-319-22309-4, and material in Gold-
ston and Rutherford’s Introduction to Plasma Physics (no online version
that I’m aware of). Please send comments/corrections to tolman@ias.edu.

1 Introduction and context
So far, you have learned how to study plasmas as though they were a conducting
fluid. This morning, we’ll start to consider how individual charged particles
(electrons and ions) move in electromagnetic fields, which will lead later on in
the day to a discussion of kinetic theory, which treats a plasma as a collection
of particles all moving separately under the influence of electromagnetic fields.
Virtually all of this lecture is a consequence of one equation:

m
d~v

dt
= q

(
~E +

~v × ~B

c

)
, (1)

which determines the motion of a particle of charge q and mass m in an electric
field ~E and a magnetic field ~B. However, the consequences of this equation are
surprisingly subtle.

2 Uniform electric and magnetic fields

2.1 Gyromotion
We start by considering how a particle moves in just a magnetic field, i.e., under

m
d~v

dt
= q

(
~v × ~B

c

)
. (2)
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With ~B in the ẑ direction, we have

mv̇x = qBvy/c, mv̇y = −qBvx/c, mv̇z = 0. (3)

Taking an additional derivative gives

v̈x =
qB

mc
v̇y = −

(
qB

mc

)2

vx (4)

and

v̈y = −qB
mc

v̇x = −
(
qB

mc

)2

vy (5)

Let’s define the cyclotron frequency,

ωc ≡
|q|B
mc

(6)

These equations are solved by

vx = v⊥ cos (ωct), (7)

vy = −|q|
q
v⊥ sin (ωct), (8)

which can be integrated to give

x (t) = x0 +
v⊥
ωc

sin (ωct) (9)

y (t) = y0 +
|q|
q

v⊥
ωc

cos (ωct), (10)

from which we can define the Larmor radius

rl ≡
v⊥
ωc

=
mcv⊥
|q|B

. (11)

These equations describe gyromotion, which is illustrated in Figure 1.

2.2 ~E × ~B drift
Now, let’s consider the introduction of a uniform, time-independent electric
field, such that our equation of motion is

m
d~v

dt
= q

(
~E +

~v × ~B

c

)
. (12)

Let’s consider how a particle moves in this set of fields. To do this, I’m going
to introduce a new variable that won’t make sense at first:

~u ≡ ~v − c
(
~E × ~B

)
/B2. (13)

2



Figure 1: Gyromotion of an electron and an ion.

This is the velocity a particle would have if looked at in a frame moving with
c
(
~E × ~B

)
/B2.

If I replace ~v in (15) with ~u+ c
(
~E × ~B

)
/B2, i.e.,

m
d~u

dt
= q

 ~E +
~u× ~B

c
+

(
~E × ~B

)
× ~B

B2

 , (14)

and apply vector identities, I arrive at

m
d~u

dt
= q

[
b̂
(
~E · b̂

)
+
~u× ~B

c

]
. (15)

Let’s consider what this equation means. Its component parallel to the magnetic
field is just

m
du‖

dt
= qE‖, (16)

which is normal motion parallel to an electric field. The perpendicular compo-
nent is

m
d~u⊥
dt

= q

[
~u⊥ × ~B

c

]
, (17)

which gives the same gyromotion that we solved for in 2.1. This means that in
a frame moving with the velocity

~vE×B = c
(
~E × ~B

)
/B2, (18)

the perpendicular dynamics is just gyromotion. This means that the overall
particle trajectory is gyration plus a drift ~vE×B . Let’s take a look at this, in
Figure 2.
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Figure 2: ~E × ~B drift.

3 Non-uniform electric and magnetic fields

3.1 Grad-B drift
Another particle drift occurs in a magnetic field that varies in space perpendic-
ular to its direction. The math to derive this drift is slightly more involved, so
let’s just look at it physically. Consider Figure 3.

Calculation of the drift (using perturbation theory; a good explanation can
be found in Goldston and Rutherford Ch. 3) gives that its value is

~v∇B = ±v⊥rl
2

~B ×∇B
B2

, (19)

with the ± corresponding to the sign of the charge.

3.2 Magnetic mirrors
Finally, let’s consider particle motion in a magnetic field that varies along its
direction. The setup is in Figure 4, where the magnetic field strength varies
along ẑ (I’ll be using cylindrical coordinates in this section). First, note that
although the magnetic field is on the left side just along ẑ, it will develop a
radial component as it gains strength, which can be found from

∇ · ~B =
1

r

∂

∂r
(rBr) +

∂Bz
∂z

= 0. (20)
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Figure 3: Grad B drift.

Assuming approximately constant ∂Bz/∂z, we find

rBr = −
∫ r

0

r
∂Bz
∂z

dr ≈ −r
2

2

∂Bz
∂z

, (21)

Br ≈ −
r

2

∂Bz
∂z

, (22)

Let’s examine the z component of component of the force caused by this radial
magnetic field:

Fz = −q
c
vθBr. (23)

Consider also for simplicity a particle with a guiding center at the center (r = 0)
of the mirror, such that vθ = ∓v⊥ is constant during a gyration. Then, we find
the average force

F̄z = ∓ 1

2c
qv⊥rl

∂Bz
∂z

= −1

2

mv2⊥
B

∂Bz
∂z
≡ −µ∂Bz

∂z
, (24)

where we have defined the magnetic moment,

µ ≡ 1

2
mv2⊥/B. (25)

This is a specific form of the force on a diamagnetic particle,

~F‖ = −µ∂B/∂~s, (26)

with d~s a line element along ~B. Let’s consider the equation of motion along ~B:

m
dv‖

dt
= −µ∂B

∂s
. (27)
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Figure 4: Magnetic mirror setup.

Multiplying by v‖ gives

mv‖
dv‖

dt
=

d

dt

(
1

2
mv2‖

)
= −µ∂B

∂s

ds

dt
= −µdB

dt
. (28)

(Note that the right side is the time variation seen by the particle, the actual
field doesn’t change with time.) Since the particle’s energy is constant, I can
write

d

dt

(
1

2
mv2‖

)
= − d

dt

(
1

2
mv2⊥

)
= − d

dt
(µB) = −µdB

dt
. (29)

The last two expressions can be restated as

dµ

dt
= 0, (30)

which means that the magnetic moment is conserved throughout the particle
motion. (It is called an “adiabatic invariant.") This means that as a particle
approaches a region of higher magnetic field, its perpendicular velocity will
increase to keep µ constant. This will decrease the particle’s parallel velocity (so
that energy is constant), causing the particle to “mirror" and reverse direction.
This is shown schematically in Figure 5.
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Figure 5: Magnetic mirror in action.
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