Motion of charged particles in electromagnetic fields

Libby Tolman

June 2021

Abstract

These are notes for the Thursday, June 10th, 10 am EDT lecture at the 2021 NSF/APS-DPP GPAP Summer School. They borrow from lecture notes available at https://www. astro.princeton.edu/~kunz/Site/ AST521/AST521_lecture_notes_Kunz.pdf, material in Chen's Introduction to Plasma Physics and Controlled Fusion, available at https://link. springer.com/book/10.1007/978-3-319-22309-4, and material in Goldston and Rutherford's Introduction to Plasma Physics (no online version that I'm aware of). Please send comments/corrections to tolman@ias.edu.

1 Introduction and context

So far, you have learned how to study plasmas as though they were a conducting fluid. This morning, we'll start to consider how individual charged particles (electrons and ions) move in electromagnetic fields, which will lead later on in the day to a discussion of kinetic theory, which treats a plasma as a collection of particles all moving separately under the influence of electromagnetic fields. Virtually all of this lecture is a consequence of one equation:

$$
\begin{equation*}
m \frac{d \vec{v}}{d t}=q\left(\vec{E}+\frac{\vec{v} \times \vec{B}}{c}\right), \tag{1}
\end{equation*}
$$

which determines the motion of a particle of charge q and mass m in an electric field \vec{E} and a magnetic field \vec{B}. However, the consequences of this equation are surprisingly subtle.

2 Uniform electric and magnetic fields

2.1 Gyromotion

We start by considering how a particle moves in just a magnetic field, i.e., under

$$
\begin{equation*}
m \frac{d \vec{v}}{d t}=q\left(\frac{\vec{v} \times \vec{B}}{c}\right) . \tag{2}
\end{equation*}
$$

With \vec{B} in the \hat{z} direction, we have

$$
\begin{equation*}
m \dot{v}_{x}=q B v_{y} / c, m \dot{v}_{y}=-q B v_{x} / c, m \dot{v}_{z}=0 . \tag{3}
\end{equation*}
$$

Taking an additional derivative gives

$$
\begin{equation*}
\ddot{v}_{x}=\frac{q B}{m c} \dot{v}_{y}=-\left(\frac{q B}{m c}\right)^{2} v_{x} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\ddot{v}_{y}=-\frac{q B}{m c} \dot{v}_{x}=-\left(\frac{q B}{m c}\right)^{2} v_{y} \tag{5}
\end{equation*}
$$

Let's define the cyclotron frequency,

$$
\begin{equation*}
\omega_{c} \equiv \frac{|q| B}{m c} \tag{6}
\end{equation*}
$$

These equations are solved by

$$
\begin{gather*}
v_{x}=v_{\perp} \cos \left(\omega_{c} t\right) \tag{7}\\
v_{y}=-\frac{|q|}{q} v_{\perp} \sin \left(\omega_{c} t\right), \tag{8}
\end{gather*}
$$

which can be integrated to give

$$
\begin{gather*}
x(t)=x_{0}+\frac{v_{\perp}}{\omega_{c}} \sin \left(\omega_{c} t\right) \tag{9}\\
y(t)=y_{0}+\frac{|q|}{q} \frac{v_{\perp}}{\omega_{c}} \cos \left(\omega_{c} t\right) \tag{10}
\end{gather*}
$$

from which we can define the Larmor radius

$$
\begin{equation*}
r_{l} \equiv \frac{v_{\perp}}{\omega_{c}}=\frac{m c v_{\perp}}{|q| B} \tag{11}
\end{equation*}
$$

These equations describe gyromotion, which is illustrated in Figure 1

$2.2 \vec{E} \times \vec{B}$ drift

Now, let's consider the introduction of a uniform, time-independent electric field, such that our equation of motion is

$$
\begin{equation*}
m \frac{d \vec{v}}{d t}=q\left(\vec{E}+\frac{\vec{v} \times \vec{B}}{c}\right) \tag{12}
\end{equation*}
$$

Let's consider how a particle moves in this set of fields. To do this, I'm going to introduce a new variable that won't make sense at first:

$$
\begin{equation*}
\vec{u} \equiv \vec{v}-c(\vec{E} \times \vec{B}) / B^{2} \tag{13}
\end{equation*}
$$

Figure 1: Gyromotion of an electron and an ion.

This is the velocity a particle would have if looked at in a frame moving with $c(\vec{E} \times \vec{B}) / B^{2}$.

If I replace \vec{v} in (15) with $\vec{u}+c(\vec{E} \times \vec{B}) / B^{2}$, i.e.,

$$
\begin{equation*}
m \frac{d \vec{u}}{d t}=q\left[\vec{E}+\frac{\vec{u} \times \vec{B}}{c}+\frac{(\vec{E} \times \vec{B}) \times \vec{B}}{B^{2}}\right], \tag{14}
\end{equation*}
$$

and apply vector identities, I arrive at

$$
\begin{equation*}
m \frac{d \vec{u}}{d t}=q\left[\hat{b}(\vec{E} \cdot \hat{b})+\frac{\vec{u} \times \vec{B}}{c}\right] . \tag{15}
\end{equation*}
$$

Let's consider what this equation means. Its component parallel to the magnetic field is just

$$
\begin{equation*}
m \frac{d u_{\|}}{d t}=q E_{\|}, \tag{16}
\end{equation*}
$$

which is normal motion parallel to an electric field. The perpendicular component is

$$
\begin{equation*}
m \frac{d \vec{u}_{\perp}}{d t}=q\left[\frac{\vec{u}_{\perp} \times \vec{B}}{c}\right], \tag{17}
\end{equation*}
$$

which gives the same gyromotion that we solved for in 2.1. This means that in a frame moving with the velocity

$$
\begin{equation*}
\vec{v}_{E \times B}=c(\vec{E} \times \vec{B}) / B^{2}, \tag{18}
\end{equation*}
$$

the perpendicular dynamics is just gyromotion. This means that the overall particle trajectory is gyration plus a drift $\vec{v}_{E \times B}$. Let's take a look at this, in Figure 2

Figure 2: $\vec{E} \times \vec{B}$ drift.

3 Non-uniform electric and magnetic fields

3.1 Grad-B drift

Another particle drift occurs in a magnetic field that varies in space perpendicular to its direction. The math to derive this drift is slightly more involved, so let's just look at it physically. Consider Figure 3 .

Calculation of the drift (using perturbation theory; a good explanation can be found in Goldston and Rutherford Ch. 3) gives that its value is

$$
\begin{equation*}
\vec{v}_{\nabla B}= \pm \frac{v_{\perp} r_{l}}{2} \frac{\vec{B} \times \nabla B}{B^{2}} \tag{19}
\end{equation*}
$$

with the \pm corresponding to the sign of the charge.

3.2 Magnetic mirrors

Finally, let's consider particle motion in a magnetic field that varies along its direction. The setup is in Figure 4, where the magnetic field strength varies along \hat{z} (I'll be using cylindrical coordinates in this section). First, note that although the magnetic field is on the left side just along \hat{z}, it will develop a radial component as it gains strength, which can be found from

$$
\begin{equation*}
\nabla \cdot \vec{B}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{\partial B_{z}}{\partial z}=0 \tag{20}
\end{equation*}
$$

Figure 3: Grad B drift.

Assuming approximately constant $\partial B_{z} / \partial z$, we find

$$
\begin{gather*}
r B_{r}=-\int_{0}^{r} r \frac{\partial B_{z}}{\partial z} d r \approx-\frac{r^{2}}{2} \frac{\partial B_{z}}{\partial z} \tag{21}\\
B_{r} \approx-\frac{r}{2} \frac{\partial B_{z}}{\partial z} \tag{22}
\end{gather*}
$$

Let's examine the z component of component of the force caused by this radial magnetic field:

$$
\begin{equation*}
F_{z}=-\frac{q}{c} v_{\theta} B_{r} \tag{23}
\end{equation*}
$$

Consider also for simplicity a particle with a guiding center at the center ($r=0$) of the mirror, such that $v_{\theta}=\mp v_{\perp}$ is constant during a gyration. Then, we find the average force

$$
\begin{equation*}
\bar{F}_{z}=\mp \frac{1}{2 c} q v_{\perp} r_{l} \frac{\partial B_{z}}{\partial z}=-\frac{1}{2} \frac{m v_{\perp}^{2}}{B} \frac{\partial B_{z}}{\partial z} \equiv-\mu \frac{\partial B_{z}}{\partial z} \tag{24}
\end{equation*}
$$

where we have defined the magnetic moment,

$$
\begin{equation*}
\mu \equiv \frac{1}{2} m v_{\perp}^{2} / B \tag{25}
\end{equation*}
$$

This is a specific form of the force on a diamagnetic particle,

$$
\begin{equation*}
\vec{F}_{\|}=-\mu \partial B / \partial \vec{s} \tag{26}
\end{equation*}
$$

with $d \vec{s}$ a line element along \vec{B}. Let's consider the equation of motion along \vec{B} :

$$
\begin{equation*}
m \frac{d v_{\|}}{d t}=-\mu \frac{\partial B}{\partial s} \tag{27}
\end{equation*}
$$

Figure 4: Magnetic mirror setup.

Multiplying by $v_{\|}$gives

$$
\begin{equation*}
m v_{\|} \frac{d v_{\|}}{d t}=\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}\right)=-\mu \frac{\partial B}{\partial s} \frac{d s}{d t}=-\mu \frac{d B}{d t} . \tag{28}
\end{equation*}
$$

(Note that the right side is the time variation seen by the particle, the actual field doesn't change with time.) Since the particle's energy is constant, I can write

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{1}{2} m v_{\|}^{2}\right)=-\frac{d}{d t}\left(\frac{1}{2} m v_{\perp}^{2}\right)=-\frac{d}{d t}(\mu B)=-\mu \frac{d B}{d t} . \tag{29}
\end{equation*}
$$

The last two expressions can be restated as

$$
\begin{equation*}
\frac{d \mu}{d t}=0, \tag{30}
\end{equation*}
$$

which means that the magnetic moment is conserved throughout the particle motion. (It is called an "adiabatic invariant.") This means that as a particle approaches a region of higher magnetic field, its perpendicular velocity will increase to keep μ constant. This will decrease the particle's parallel velocity (so that energy is constant), causing the particle to "mirror" and reverse direction. This is shown schematically in Figure 5

Figure 5: Magnetic mirror in action.

