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Abstract
These are notes for the Tuesday, June 8th, 10 am EDT lecture at

the 2021 NSF/APS-DPP GPAP Summer School. They borrow heav-
ily from lecture notes available at https://www.astro.princeton.edu/
~kunz/Site/AST521/AST521_lecture_notes_Kunz.pdf. Please send com-
ments/corrections to tolman@ias.edu.

1 MHD equations (review from yesterday)
Yesterday, Prof. Brown introduced the MHD equations. These are (in ideal
form):

• the continuity equation,

∂ρ

∂t
+∇ · (ρ~u) = 0, (1)

• the momentum equation,

ρ

(
∂

∂t
+ ~u · ∇

)
~u =

~j × ~B

c
−∇p (2)

• Ohm’s law,1

~E +
~u× ~B

c
= 0 (3)

• Ampère’s law,
~j =

c

4π
∇× ~B, (4)

• Faraday’s law,
∂ ~B

∂t
= −c∇× ~E (5)

1By combining with Faraday’s law, this can also be expressed via the induction equation,
∂ ~B
∂t

= ∇×
(
~u× ~B

)
.
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Quantity Definition
ρ mass density
~u plasma velocity
~j current density
~B magnetic field
c speed of light
p plasma pressure
γ ratio of specific heats (i.e., 5/3)

Table 1: Definitions of parameters in the MHD equations.

• divergence constraint,
∇ · ~B = 0, (6)

• and the adiabatic energy equation,(
∂

∂t
+ ~u · ∇

)(
p

ργ

)
= 0. (7)

The definitions of the parameters in these equations are given in Table 1.
Today, we’re going to explore waves that these equations allow. For this purpose,
it will be useful to rewrite (2) using (4) as

ρ

(
∂

∂t
+ ~u · ∇

)
~u =

~j × ~B

c
−∇p = 1

4π

(
∇× ~B

)
× ~B −∇p

= −∇p− 1

8π
∇B2 +

1

4π
~B · ∇ ~B

= −∇p− 1

8π
∇⊥B2 +

B2

4π
~b · ∇~b. (8)

Here, B2/ (8π) is magnetic pressure, and represents the tendency of the magnetic
field to want to be the same strength everywhere. B2

4π
~b·∇~b is a curvature/tension

term that represents the desire of magnetic field lines to be straight. These forces
are illustrated in Figure 1.

2 Linearization
Let’s consider the ẑ direction to be along the magnetic field. Waves can exist
at an arbitrary angle to the magnetic field, with a wave vector

~k = k‖ẑ + ~k⊥, (9)

which is indicated in Figure 2. Then, we can consider small perturbations of
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Figure 1: Magnetic forces.

Figure 2: The magnetic field and wave vector setup.
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the various plasma quantities around the equilibrium:

ρ = ρ0 + ρ1e
i~k·~r−iωt, (10)

~B = B0ẑ + ~B1e
i~k·~r−iωt (11)

~u = 0 + ~u1e
i~k·~r−iωt, (12)

and
p = p0 + p1e

i~k·~r−iωt. (13)

The perturbations are small enough that any nonlinearities (e.g., p1p1) can be
dropped. Here, we follow the normal convention that to get observed quantities,
you take the real component, i.e.

ei
~k·~r−iωt → cos

(
~k · ~r − ωt

)
(14)

iei
~k·~r−iωt → − sin

(
~k · ~r − ωt

)
. (15)

3 Alfvén waves
Let’s start with a wave that has just ~k = k‖ẑ. From continuity, (1), we get

∂t
(
ρ0 + ρ1e

ik‖z−iωt
)
+∇ ·

[(
ρ0 + ρ1e

ik‖z−iωt
) (

0 + ~u1e
ik‖z−iωt

)]
= 0. (16)

Linearizing gives

∂t
(
ρ1e

ik‖z−iωt
)
+ ρ0∇ ·

[(
~u1e

ik‖z−iωt
)]

= 0, (17)

or
−iω ρ1

ρ0
+ ik‖u1,‖ = 0. (18)

Similar manipulation on (8) gives

−iω~u1 = −
ik‖ẑ

ρ0

(
p1 +

B0B1‖

4π

)
+
ik‖B0

4πρ0
~B1, (19)

and using the induction equation, (Ohm’s law + Faraday’s law), ∂ ~B
∂t = ∇ ×(

~u× ~B
)
,

−iω
~B1

B0
= ik‖~u1 − ẑik‖u1,‖. (20)

Note that this can be used to give

B1‖ = 0, (21)
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Figure 3: An Alfvén wave (from Introduction to Plasma Physics and Controlled
Fusion, by F.F. Chen.)

which agrees with

∇ ·
(
~B1e

ik‖z−iωt
)
= ik‖B1‖e

ik‖z−iωt = 0. (22)

Let’s consider the perpendicular waves in this system:

ρ1 = 0, (23)

−iω~u1⊥ =
ik‖B0

4πρ0
~B1⊥, (24)

and

−iω
~B1⊥

B0
= ik‖~u1⊥. (25)

Using (24) to solve for ~u1⊥ and substituting into (25) gives

ω = ±k‖
B0√
4πρ0

≡ ±k‖vA, (26)

where we have defined the Alfvén speed

vA ≡
B0√
4πρ0

. (27)

The Alfvén wave is pictured in Figure 3. You can think of it like plucking
the strings on a guitar. The tension force of the magnetic field pulls the strings
back, but they are slowed down by the weight of the plasma. You can see
that the phase velocity of the wave increases with magnetic field strength and
decreases with plasma mass.

The discovery of Alfvén waves received the 1970 Nobel prize. They are
important across plasma physics. In the sun they heat the solar corona. In
terrestrial plasma experiments, they can move particles around in undesired
ways, an effect that I studied in my PhD thesis.
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4 Slow and fast waves
We can also linearize with a more general wave vector,

~k = k‖ẑ + ~k⊥, (28)

in the same way that we did before. This is a somewhat unpleasant process
which can be found on page 63 of https://www.astro.princeton.edu/~kunz/
Site/AST521/AST521_lecture_notes_Kunz.pdf. Let’s skip to the end result:(

ω2 − k2‖v
2
A

)[
ω2 − k2‖v

2
A − k2⊥v2A

(
ω2

ω2 − k2c2s

)]
= 0. (29)

Here, we have defined a sound speed,

cs ≡
√
γp0
ρ0

. (30)

(This is the speed at which compressions and rarefactions of the plasma move
along the magnetic field without moving the field.) The first factor is just our
familiar Alfvén wave. The second factor has two new waves:

ω2 =
k2
(
c2s + v2A

)
2

±

√
k4 (c2s + v2A)

2

4
− k2‖v

2
Ak

2c2s. (31)

These are called "magnetosonic waves." The fast wave is given by the + solution
and the slow wave by the − solution.

Let’s look into what these waves are like in one limit.
For the fast wave, consider k‖ = 0. Then, we have

ω2 = k2
(
c2s + v2A

)
. (32)

This wave is illustrated in Figure 4.
For the slow wave, we can consider k‖ � k⊥. Then, the dispersion relation

becomes

ω2 ≈ k2‖v
2
A

(
c2s

c2s + v2A

)
. (33)

This wave is shown in Figure 5.
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Figure 4: The fast wave with k‖ = 0.
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Figure 5: The slow wave with k‖ � k⊥.
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